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Abstract

In the problem of binary classification or diagnostic testing, the classification algorithm or

diagnostic test produces a continuous decision variable which is compared to a critical value (or

threshold). Test values above (or below) that threshold are called positive (or negative) for disease.

There are two types of errors at every threshold value. The relationship between these two types is

the receiver operating characteristic curve (ROC). The present work is concerned with the inverse

problem; i.e., given the ROC curve (or its estimate) of a particular classification rule, what is the

value of the threshold ξ that leads to a specific operating point on that curve, i.e., a specific pair of

the two types of error. In the present work we assume the availability of a finite sample from each

distribution (class), and no knowledge about the two distributions; i.e., the threshold is estimated

nonparametrically. Asymptotic distribution is derived for the proposed estimator. Simulation results

are presented for finite sample size. Finding a particular threshold value is crucial in medical

diagnoses, among other fields, where a medical test is used to classify a patient as “diseased” or

“nondiseased” based on comparing the test result to a particular threshold value. When the ROC

is estimated, an operating point is obtained by selecting one type of errors, and get the other one

from the estimated curve. Threshold estimation can then be viewed as a quantile estimation for one

distribution but with the utilization of the second one.
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until intersecting with the ÔDC gives two estimates of the threshold of interest. These

estimates are I2g G
−1
n (p) and If F

−1
m (s) in the current case, where Ig(·) = G−1

n GF−1F−1
m (·)

and If (·) = F−1
m FG−1F−1

n (·). The dashed annotations are the quantile values that

correspond to the empirical points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 The relative efficiency between two estimators for exp. 1 assuming the knowledge of the

true ODC. The first estimator does not iterate on the true ODC; the second iterates once.

The legend indicates five values of the sample size n = m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 The relative efficiency between the proposed estimator and the sample quantile G−1
n (p) for

different experiments. The proposed estimator outperforms the sample quantile especially

in the high TPF range. The legend indicates five values of the sample size n, where m is

kept fixed at 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Estimator efficiency for Exp. 1 under sample size n = 30, for 3 different values of AUC

(shown in legend). The smaller the AUC the more efficient the estimator. . . . . . . . . . . . . . . . . 20

vi



CHAPTER 1

Introduction

Consider the binary classification problem, in which a multidimensional random vector X be-

longs to one of two classes, ω1 or ω0; we then have two distributions PX
1 and PX

0 , with densities

p1 and p0 respectively. Consider a decision function φ(X) that decides whether an observation x

belongs to ω1 or ω0 based on a decision value—e.g., a medical test—η(X) whether it is larger or

smaller than a particular threshold value ξ. This nonrandomized rule is given by

φ(X) =





1, when η(X) < ξ;

γ, when η(X) = ξ;

0, when η(X) > ξ.

Since X is distributed either as P1 or P0, according to whether the true class is ω1 or ω0, then η(X)

will have corresponding distributions denoted as F or G respectively. Without loss of generality

we can assume that—as it is customary in many applications, e.g., medical diagnoses—the decision

values under the null hypothesis G are “in general” larger than those under the alternative F ; a

special case, which is not necessary for our analysis, would be if G is stochastically larger than F .

Therefore, rejecting the null hypothesis, i.e., classifying the observation as belonging to ω1, will be

made for small values of the decision values η(X).

At every chosen threshold ξ there will be two different types of errors. Type I error, e1 = E0 φ

is the probability of rejecting the null while it is true; also called level-α test, where α = e1. Type

II error, e2 = 1 − E1 φ, is the probability of rejecting the alternative while it is true. The power

of this test, β = E1 φ, is desired to be maximized for a particular type I error. If we choose

η(X) = p0(X)/p1(X) this will be the most powerful level-α test, which is a manifestation of the
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famous Neyman-Pearson lemma (see Lehmann and Romano, 2005, Ch. 3). Figure 1.1 illustrates

the two densities under the two hypotheses along with the two types of errors.

F ′ = Pr(η|ω0)

th
Pr(e1) = FPFPr(e2) = FNF

G′ = Pr(η|ω1)

η(x)

Pr

Figure 1.1. Two densities, F ′ and G′, of the decision values η under the two different hypoth-
esis. The two types of error are indicated.

The Ordinal Dominance Curve (ODC) is a plot of β vs. α at every possible threshold value ξ.

In terms of G and F , this is a plot of F (ξ) vs. G(ξ), ∀ ξ; equivalently it is a plot of FG−1(p) vs.

p, 0 ≤ p ≤ 1. In some applications, e.g., Automatic Target Recognition (ATR), and imaging and

medical diagnoses, it is customary to plot 1−α vs. 1−β. The resulting curve is called the Receiver

Operating Characteristic (ROC) curve. In that context, 1 − α is called the True Positive Fraction

(TPF) and 1 − β is called the False Positive Fraction (FPF). The solid curve in Figure 2.1 is an

illustration for an ODC.

The costs of the two types of error are typically not equal. For example, missing a cancer (a

false negative) greatly outweighs sending a nondiseased patient to biopsy (a false positive). The

prior probabilities π1 and π0 of the two classes ω1 and ω0 also enter into the choice of the optimum

threshold setting. If the decision function η is the likelihood ratio p0/p1 and cij is the cost of deciding

i while the truth is j, then selecting ξ to be equal to c01π1/c10π0 gives rise to the Bayes decision

2



rule which minimizes the risk (see Anderson, 2003, Ch. 6). In general, η is not the likelihood ratio

and we need to know which threshold value ξ would give a particular operating point on the ODC,

i.e., α and β, such that the risk will be minimized. If we do not know the costs and priors, the

designers of the classification rule would still like to operate at a particular operating point that

they determine to satisfy some subjective criteria. In either case, the decision maker must address

the same question, i.e., what is the value of ξ that achieves the operating point (p, s) = (G(ξ), F (ξ))

on the ODC?

The answer is straightforward if we know the distributions G and F . However, when we do

not know these distributions we construct the classification rule with the aid of a “training set”

tr = {xi ∈ ω0, i = 1, · · · , n} ∪ {xj ∈ ω1, j = 1, · · · ,m}. The resulting decision function is

ηtr. Several parametric and nonparametric techniques are available in the literature to construct a

classification rule, which is not the target of the present work. Estimating the ODC (or ROC) of

ηtr is of great interest for ROC analysis. Several approaches are available in the literature for that

task. It is not our intention here to give a full account of the history of ROC estimation/analysis;

however, some key papers can be cited (Dorfman and Alf, —1969—; Hsieh and Turnbull, —1996—;

Metz and Pan, —1999—; Pepe, —2000—; Qin and Zhang, —2003—).

A naive estimator of the ODC is the unsmooth empirical ODC, which we denote by ÔDC; see

Figure 2.1. It is a plot of the empirical distribution function Fm(ξ) vs. Gn(ξ) at every threshold value

ξ (see Section 2). The empirical ODC has several attractive distribution-free features. It converges

to the true ODC, i.e., FG−1(p), ∀ 0 ≤ p ≤ 1; moreover, it can be represented as a summation of

two independent versions of Brownian bridges (up to a term of small order of magnitude); see Hsieh

and Turnbull (—1996—). In the case of finite samples, ÔDC does not have the quality we desire

for our purpose of estimating the threshold value at a particular operating point.

First, we assume that we have the ODC—but with no knowledge of the individual distributions

G and F—and we will propose an empirical procedure or “algorithm” for estimating the threshold

at a particular operating point with the aid of ÔDC. This allows us to discover any optimality

3



properties of the proposed procedure before involving any asymptotic behavior associated with the

ODC estimation. Afterwards, we can approximate the ODC by any smoothing method.
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CHAPTER 2

Algorithm for Threshold Estimation

2.1. Preliminaries

In this section we propose a procedure (algorithm) that estimates the threshold at a particular

operating point M , whose coordinates on the curve are (p, s). Primitive statistical definitions are

needed for this purpose; we will introduce them here for the sake of completeness for a wider

readership.

The empirical (sample) distribution function Gn, an estimator for G, is defined as

Gn(ξ) =
1

n
ΣiI(xi≤ξ),

where I is the indicator function. It is known that

Gn(·) a.s.→ G(·),

n1/2(Gn(ξ)−G(ξ))
D→ N (0, G(ξ)(1−G(ξ))). (2.1)

This can be shown to be also true when ξ is a r.v.; see Lemma 4. The pth-quantile G−1(p) is defined

as

G−1(p) = inf{x, G(x) ≥ p}.

The sample pth-quantile G−1
n (p), an estimator of G−1(p), is the pth-quantile of Gn, i.e.,

G−1
n (p) = inf{xi, Gn(xi) ≥ p, i = 1, · · · , n}. (2.2)

5



In the sequel we will be using the notation ξp and ξ̂p interchangeably for G−1(p) and G−1
n (p)

respectively. Analogously to Gn, above, we have

G−1
n (·) a.s.→ G−1(·), (2.3)

n1/2(G−1
n (p)−G−1(p))

D→ N (0, p(1− p)/[G′(ξp)]
2), (2.4)

if G′ exists at ξp; a similar result is available if G is only left or right differentiable.

Bahadur (—1966—) derived the almost sure convergence (up to a small order of magnitude)

of ξ̂p to ξp. Later, Ghosh (—1971—) introduced a new elegant proof for Bahadur’s result (up to a

small order of magnitude in probability, which suffices for many applications including our purpose;

see Lemma 2. The introductory material above, along with its derivations, can be found, e.g., in

Serfling (1980, Ch. 2).

2.2. Pseudocode and Mathematical Formalization

We assume that we are given a finite sample of the decision values from each of the two classes.

These values also provide a representation of the empirical distributions Gn and Fm. We also assume

the availability of the ODC, to be replaced ultimately by a parametric or semiparametric estimated

smooth curve. Figure 2.1 provides a plot of an ODC and ÔDC; the latter is a plot of Fm(ξ) vs.

Gn(ξ) as the threshold ξ is moved throughout its range on the decision axis. When ξ crosses a point

xi ∈ Gn (or Fm) this produces a horizontal (or vertical) increment on ÔDC. Our task is to estimate

the threshold corresponding to a given point M = (p, s) on the ODC.

A natural candidate algorithm for the task of estimating ξ is Algorithm 1. First, find the

quantiles in the appropriate distribution that correspond to the upper intersection point, U =

(pU , sU ) and the lower intersection point, L = (pL, sL), of the ODC and the ÔDC; a reasonable

estimate would then consist of a weighted sum of these quantiles. As we analyze the properties of

this estimator below, an alternative candidate estimator will naturally suggest itself. Algorithm 1 is

a heuristic starting point, not designed to achieve any optimality property. However, it is a natural

startup and an intuitive first-order approximation.

6



0 1
0

1

G(ξ)GnF−1

m (s)pGF−1FmG−1

n (p)

F (ξ)

FG−1GnF−1

m (s)

s

FmG−1

n (p)

I2

gG−1

n (p) G−1

n GF−1FmG−1

n (p) = IgG
−1

n (p) G−1

n (p)

F−1

m (s)

F−1

m FG−1GnF−1

m (s) = IfF−1

m (s)

L

U
M

Figure 2.1. The true ODC (solid line) and the empirical one, ÔDC (staircase line). Starting
from an operating point of interest M = (p, s) and moving in the two directions, along the

ODC, until intersecting with the ÔDC gives two estimates of the threshold of interest. These
estimates are I2g G

−1

n (p) and If F
−1

m (s) in the current case, where Ig(·) = G−1

n GF−1F−1

m (·) and

If (·) = F−1

m FG−1F−1

n (·). The dashed annotations are the quantile values that correspond to
the empirical points.

Other ad-hoc procedures are possible. For example, we could have projected every point on the

ÔDC to the ODC and selected the closest two projections from each side (on the curve) of the point

M . Then, interpolate on the arc between the threshold values of the two original points (or even

the estimated threshold of the two projections). This procedure has the following two problems in

the finite sample size. First, there can be more than one projection from a point to the curve; this

may happen if the point is a center of a circular arc on the curve. Second, it can happen that two

7



Algorithm 1 Threshold Estimation at a point M(= (p, s)) on the ODC

ÔDC ← empirical ODC.
ODC ← true ODC.
U(= (pU , sU ))← upper intersection point between ODC and ÔDC.

L(= (pL, sL))← lower intersection point between ODC and ÔDC.

if ÔDC at U is vertical then
τ̂U = F−1

m (sU ) //sample sU
th-quantile for F .

τ̂L = G−1
n (pL) //sample pL

th-quantile for F .
else

τ̂U = G−1
n (pU ).

τ̂L = F−1
m (sL).

end if

return ξ̂ = aτ̂U +(1−a)τ̂L //A convex combination, which could be obtained, in an ad-hoc way,
from interpolation on the curve.

empirical points generate two projections which have reverse order on the ODC, a matter that does

not preserve monotonicity of the ODC. We do not study such a procedure in the present work.

A mathematical formalization of Algorithm 1 is straightforward to follow on Figure 2.1; re-

member that our goal is to give the estimate ξ̂ that estimates ξ (= G−1(p) = F−1(s)). The

point M (= (p, s)) has a sample pth-quantile G−1
n (p)(= ξ̂p). The empirical distribution Fm evalu-

ated at this threshold is FmG−1
n (p). There will then be a point on the ODC with the coordinates

GF−1FmG−1
n (p) and FmG−1

n (p); the corresponding sample quantile at this threshold for ω0 is then

G−1
n GF−1FmG−1

n (p) = Ig G
−1
n (p), where Ig(·) (an Iteration) is G−1

n GF−1Fm(·). If there is no inter-

section between the ODC and the ÔDC at the value FmG−1
n (p), then we must iterate with the Ig

operator starting from the point Ig G
−1
n (p) until we find the first intersection. If the first intersection

occurs after i iterations, then the estimator τ̂L in Algorithm 1 will be Iig G
−1
n (p), where Iig means

applying the operator Ig i-times to its argument. Figure 2.1 shows iterations up to i = 2. Analogous

formulation is immediate for τ̂U , with the result of Ijf F
−1
n (s), where If (·) = F−1

m FG−1Gn(·). Note

that i and j are random sequences which are functions of the data and m and n. We have not

subscripted i and j to simplify the notation. Moreover, we will argue that they will not play a

significant role in the analysis in the next section.
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CHAPTER 3

Probabilistic Analysis for the

Threshold Estimation Algorithm

In this section we provide a rigorous analysis for the asymptotic properties of Algorithm 1; we

begin with a roadmap. Since a representative intersection point of ODC and ÔDC (say L in Figure

2.1) has the estimated threshold of I2g G
−1
n (p), we can analyze Ig Xn for any arbitrary Xn (a random

sequence) and Iig Xn can be derived recursively for any i.

We note that the first operation in Ig(Xn) = G−1
n GF−1Fm(Xn) is Fm(Xn). Thus, we will first

require a generalization of (2.1) for Fm(Xn); this is provided by Lemma 4. Analysis of the subsequent

operations, GF−1, can then be obtained by a direct application of the delta method. Properties of

the final operation, G−1
n , require a generalization of (2.4) to allow for random p; this is provided

by Lemma 5. An intermediate generalization of (2.4) limited to a deterministic variable is given in

Lemma 2. Having derived the asymptotic behavior for Iig(G
−1
n (p)) and the dually defined expression

Ijf (F
−1
m (s)), then we have the asymptotic behavior of the vector ξ̂ = (Iig G

−1
n (p), Ijf F

−1
m (s))′. The two

components of ξ̂ will be shown to be asymptotically unbiased for ξ; hence ξ̂ is unbiased for ξ1, where

1 is a vector of two components, each equals one. We can then solve for the linear combination α

that minimizes the asymptotic variance of the proposed estimator α′ξ̂, which will be asymptotically

unbiased for ξ as well.

Theorem 1. Consider the quantile process ξ̂ = (Iig G
−1
n (p), Ijf F

−1
m (s))′ produced by Algorithm 1;

then

9



(1) the estimator ξ̂ has the following weak convergence property, as n→∞, m→∞

n1/2(ξ̂ − ξ1)
D→ N (0,Σ), where

Σ =




(i+ 1)2e2g + i2
e2f
λ −(i+ 1)je2g − i(j + 1)

e2f
λ

−(i+ 1)je2g − i(j + 1)
e2f
λ (j + 1)2

e2f
λ + j2e2g


 ,

eg
2 = p(1− p)/G′2(ξ),

ef
2 = s(1− s)/F ′2(ξ),

and we assume that m/n converges, say to λ as n→∞.

(2) For every i and j there is a linear combination α′(i, j) that minimizes the asymptotic

variance of α′ξ̂; and this minimum variance does not depend on either i or j and is given

by

min
α

var[α′ξ̂] =
e2ge

2
f

λe2g + e2f
;

The value of α that achieves this minimum variance can be obtained directly (without

iterations) from the case i = j = 0 (the case of sample quantiles (G−1
n (p), F−1

m (s)), as

α =


 1

1 +
e2g

e2
f
/λ

,
1

1 +
e2
f
/λ

e2g




′

. (3.1)

Proof. Consider the point M = (p, s) on ODC with a corresponding threshold ξ, where F (ξ) = s,

and G(ξ) = p. Then, for any Xn such that n1/2(Xn − ξ)
D→ X, by applying Lemma 4 with Fm in

place of Gn of the Lemma, we get

m1/2(Fm(Xn)− s) = m1/2(Fm(ξ)− s) +m1/2F ′(ξ)(Xn − ξ) + op(1). (3.2)

Then a direct application of the delta method to the function GF−1, whose derivative is G′/F ′, and

normalizing the rate of convergence to n1/2, leads to

n1/2(GF−1Fm(Xn)− p) =
m1/2

λ1/2

G′(ξ)

F ′(ξ)
(Fm(ξ)− s) + n1/2G′(ξ)(Xn − ξ) + op(1). (3.3)

10



Now, by direct application of Lemma 5 with pn = GF−1Fm(Xn) we get

n1/2(G−1
n GF−1Fm(Xn)− ξ) =

m1/2

λ1/2F ′(ξ)
(Fm(ξ)− s) + n1/2(Xn − ξ)− n1/2(Gn(ξ)− p)

G′(ξ)
+ op(1)

= −egNg + ef/
√
λNf +X + op(1), (3.4)

where n1/2(Gn(ξ)− p)
D→ N (0, p(1− p)); and Ng is its normalized version. Similar definitions hold

for Nf .

If we denoteG−1
n GF−1Fm(·) by the operator Ig(·) then it is obvious that multifolded application—

in the language of computer science is called recursion—of Ig i-times to Xn, i.e., I
i
g(Xn), gives the

following property

n1/2(Iig(Xn)− ξ) = −iegNg + ief/
√
λNf +X + op(1). (3.5)

Now if we choose Xn to be the sample quantile G−1
n (p), then X = −√egNg by Lemma 2; and (3.5)

can be rewritten as

n1/2(Iig G
−1
n (p)− ξ) = −(i+ 1)egNg + ief/

√
λNf + op(1). (3.6)

The following analogous relation is immediate,

n1/2(Ijf F
−1
m (s)− ξ) = jegNg − (j + 1)ef/

√
λNf + op(1). (3.7)

Since Ng and Nf are independent, then part (1) is proved. We should note that with higher

iterations on the ODC (higher values of i and j) the variance of each component of ξ̂ increases,

however the covariance decreases (negative covariance). Part (2) is proved by direct application of

Lemma 6. Notice that α does not depend explicitly on G′ or F ′, rather, it depends on the ratio

e2g/e
2
f = p(1− p)/(s(1− s)S2(p, s)), where S(p, s) is the slope of the ODC at the point (p, s), which

is assumed to be known. Notice that e2g and e2f are the asymptotic variances of G−1
n (p) and F−1

m (s)

respectively.

This theorem indicates that the proposed algorithm has the same asymptotic efficiency as simply

using the sample quantiles from the respective distributions at the point (p, s) with the convex
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combination given in (3.1). Moreover, the details of the proofs of the Lemmas (see Appendix) that

are used in the proof of the above theorem reveal that the op term in (3.6) is an accumulation of

those in (3.2)–(3.4). Similarly is the op term in (3.7). A corresponding theorem for the case of

finite samples in this problem does not seem tractable. However, qualitatively speaking, one can

anticipate that the asymptotically vanishing terms will accumulate into variances in the finite sample

problem. This means that it is anticipated to be more efficient to stop with the sample quantiles

(G−1
n (p), F−1

m (s)), i.e., the case where i = j = 0, together with the linear combination of (3.1). In

terms of the steps of Algorithm 1, the best performance will result without taking any iterations,

i.e., with considering only the estimates G−1
n (p) and F−1

m (s). In Section 4 we provide results of

simulations that support this anticipated behavior.

One can improve upon the above estimator by using a better quantile estimator than the simple

sample quantile (2.2). If we use unbiased quantile estimators (Q−1
n (p), Q−1

m (s)), whose asymptotic

variances are (σ2
g , σ

2
f/λ) with zero covariance, in place of (G−1

n (p), F−1
m (s)), the best linear combi-

nation would be (3.1) with σ2
g and σ2

f in place of e2g and e2f respectively. In this case σ2
g = σ2

g(p,G),

and similarly σ2
f , in which we do not guarantee that σ2

g/σ
2
f will be only a function of the ODC; it

may require knowledge of the individual distributions G and F . However, a good estimator for the

variance is available via bootstrapping. If we still use α in (3.1) with the new quantile estimator

it is obvious that the linear combination will still remain unbiased with less variance since eg < σg

and ef < σf (even though not the best). The majority of the techniques in the literature for de-

riving an estimator better than the sample quantile utilize the information available from the order

statistics—G−1
n (p) is only one of them—and try to find a linear combination of them; the estimate

will be a kernel-based weighted sum of the order statistics close to G−1
n (p) (see Harrell and Davis,

—1982—; Falk, —1985—).

All of the analysis above assumes the knowledge of the true ODC, however, in practice it is

difficult to realize this condition. There are many techniques available in the literature that fit the

ROC curve (the analogue to the ODC). Among them are, Metz (—1986—) (an implementation of

Dorfman and Alf (—1969—)) and its newer version, Metz and Pan (—1999—), that guarantees

12



convexity. These two fitting techniques assume that the two distributions can be transformed simul-

taneously to two normal distributions. Qin and Zhang (—2003—) assumes the ratio between the two

probability densities to be exponential; this allows the use of the logistic regression. Pepe (—2000—)

suggests direct fitting to the empirical ROC curve by using the Generalized Linear Models (GLM).

Other nonparametric methods are available as well (c.f. Lloyd and Yong, —1999—).

For every p there is a corresponding ŝ from the fitted ODC, and vice versa, for every s there

is a corresponding p̂. In terms of just one of them (let’s say ŝ) we have ŝ = ŝ(p, Fm, Gn); and

consequently F−1
m (ŝ) is no longer independent of G−1

n (p). We should notice that the asymptotic

(and the finite sample size) performance of ŝ is an intrinsic property of the fitting algorithm. In

general, assume that the fitting algorithm yields the weak convergence of ŝ such that

n1/2(ŝ− s)
D→ S,

where S = S(p, F,G). Then direct application of Lemma 4 shows that

n1/2(F−1
m (ŝ)− F−1(s))

D→ S

F ′(F−1(s))
−
√

ef/λNf + op(1). (3.8)

This means that if the fitting algorithm is asymptotically unbiased, i.e., S has a zero mean, then

F−1
m (ŝ) will be asymptotically unbiased for F−1(s) (= ξ). It should be obvious from (3.8) that, the

estimator F−1
m (ŝ) has an asymptotic variance that is inversely proportional to F ′(ξ). This means

we will get the most out of it when ξ is in a neighborhood of a high density f . The best linear

combination for G−1
n (s) and F−1

m (ŝ) depends on S, i.e., the fitting algorithm, and its asymptotic

variance and covariances with both Ng and Nf . Moreover, for the finite sample size problem this

combination may not work well since it is derived from the asymptotic distribution. Rather, we will

rely in our simulations on estimating the covariance structure, and hence the best linear combination,

between G−1
n (s) and F−1

m (ŝ) by bootstrapping. Then the estimator should be in the form:

α̂′
b(G

−1
n (p), F−1

m (ŝ)),

where α̂′
b is the bootstrap estimate of the best linear combination given by Lemma 6 for the

two estimators G−1
n (p) and F−1

m (ŝ). If the data is censored such that the largest order statistic x(m)
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from the distribution F is smaller than the estimator G−1
n (p)—or, vise versa, if the smallest order

statistic y(1) from the distribution G is larger than F−1
m (s) in case of estimating the threshold that

corresponds to a particular s—we should expect the estimator to be biased. Even if the current

two samples are not censored, bootstrapping can reveal whether this will be the case or not if the

majority (say 90%) of the bootstrap replications are not censored; we call this condition condB . It

is easy to almost eliminate this bias by proposing the final version of our estimator as:

ξ̂(p) =





α̂′
b(G

−1
n (p), F−1

m (ŝ)) if G−1
n (p) < x(m) & condB

G−1
n (p) otherwise

, (3.9a)

ξ̂(s) =





α̂′
b(F

−1
m (s), G−1

n (p̂)) if y(1) < F−1
m (s) & condB

F−1
m (s) otherwise

. (3.9b)

It should be noted that, by estimating the ROC we are no longer able to define an operating

point on the curve with full determinism, i.e., by specifying a pair of (FPF, TPF), which equals to

(1-s, 1-p). Rather, we can define one of these two fractions and get an estimate of the other from

the fitted ROC. In that sense, the problem of the threshold estimation can be viewed as quantile

estimation for the specified fraction. The utility of the other distribution, say F , is then to account

as a smoothing kernel that is used to “learn” the G distribution. If the two curves are separated

enough we do not get an advantage of F as mentioned. This is obvious from (3.9), since F ′ would

be small and increases the variance of F−1
m (ŝ). We cannot behave worse than G−1

n (p) as the linear

combination is convex; and this is provided that the fitting procedure is unbiased as declared. If

the fitting algorithm is biased for some range of p, as will be demonstrated in Section 4, the sample

quantile may outperform our estimator.
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CHAPTER 4

Simulation

In this section we present the simulation results carried out to assess the proposed estimator. We

utilized different distributions to span a wide range of possibilities. Table 4.1 lists those experiments

and the parameters of the corresponding distributions. The F and G distributions in experiment 1

(Exp. 1) are normals with common variance equals 1 and means equal 0 and 1 respectively. This

separation between the two means achieves around 0.76 AUC (Area Under the Curve). This is the

area under the ROC or ODC, since
∫
TPF dFPF =

∫
s dp. The other experiments utilize the

”Generalized Lambda Distribution” (Ramberg et al., —1979—). This distribution is characterized

by 4 different parameters, namely, λ1, · · · , λ4; they determine the shape of the distribution. The four

columns in the table display those lambda values for the two distributions. The two distributions in

Exp. 2 are skewed to the left and to the right respectively (skewed outside), in Exp. 3 are skewed

to the right, and in Exp. 4 are skewed to the left. In Exp. 5 the two distributions are symmetric

with heavy tails similar to those of the t-dist with 9 df. The scale parameter λ1 of F is always set to

0 and that of G is adjusted to achieve the separability that gives the same value (0.76) of the AUC

of Exp. 1.

In section 3 we saw that the estimator obtained using Algorithm 1 with iterations on the true

ODC is asymptotically as efficient as without iterations. In that section we anticipated that the

finite sample size performance without iterations will be even better. Figure 4.1 illustrates this fact

by plotting the relative efficiency (RE) for one- vs. no-iteration estimators. This efficiency is plotted

vs. the TPF, i.e., (1− p), for different values of the sample size n = m. The results are obtained via

10,000 trials of MC study for Exp. 1.
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The RE between the estimator (3.9) and the sample quantile G−1
n (p) is illustrated in Figure

4.2. The number of MC trials is 10,000. For every MC trial, one sample from every distribution, F

and G, is simulated and the ROC is fitted using the GLM, where both the link and basis functions

used are the probit. Then, the two estimators in (3.9), G−1
n (p) and F−1

m (ŝ), are obtained and 200

bootstrap replications are used to get the estimate α̂b. This procedure gives one MC estimate of the

estimator (3.9).

The results remarkably illustrate the superiority of the proposed estimator over the sample

quantile, especially for the high values of the TPF. In Exp. 2 the RE drops below 1 for larger

sample size n, in some range of the TPF. This is due to the fact that the major part of the ODC,

under this configuration, looks like a straight line with slope close to 1. This vanishing curvature

is challenging for the undertaken fitting procedure to cope with. This produces bias except where

the true and the fitted ROC intersect; this violates the assumption of having an unbiased fitting

procedure; hence the bias of the estimator and the large MSE. This pattern appears again in Figure

4.2.e, though less severely.

The results illustrated in these figures are produced, as aforementioned, under distribution

separation that resulted in an AUC value of 0.76. From the discussion in the previous section

and above it is expected that the efficiency of the estimator will be higher with less separated

distributions, i.e., with lower AUC. Figure 4.3 illustrates the efficiency of the estimator for Exp. 1,

when the sample size n = 30. The efficiency is plotted vs. the TPF under three different values

of AUC, 0.60, 0.76, and 0.90, by increasing the mean of G. The lower the AUC the more efficient

the estimator. This observation is common to all other values of the sample size n, and to all other

experiments as well.
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Exp. F,G Parameters Skewness

1 N (0, 1),N (1, 1) symmetric
2 0,-.035 .034 .0285,.009695 .009695,.0285 outside
3 0,.91 .034 .009695 .0285 right
4 0,.91 .034 .0285 .009695 left
5 0,.86 -.3203 -.1359 -.1359 symmetric heavy tails

Table 4.1. Description of different experiments.The Generalized Lambda Distribution is used
in exp. 2–5; e.g., Exp. 2 has λ1 equals 0 and −.035 for F and G respectively; while, for both
distributions, λ2 = .034. λ3 and λ4 are displayed in the next two columns. The skewness of
the two distributions is indicated in the last column; e.g., outside skewness indicates that F is
left-skewed and G is right-skewed. Exp. 5 utilizes heavy-tailed distributions similar to t-dist
with 9 df.
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Figure 4.1. The relative efficiency between two estimators for exp. 1 assuming the knowledge
of the true ODC. The first estimator does not iterate on the true ODC; the second iterates once.
The legend indicates five values of the sample size n = m
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Figure 4.2. The relative efficiency between the proposed estimator and the sample quantile
G−1

n (p) for different experiments. The proposed estimator outperforms the sample quantile
especially in the high TPF range. The legend indicates five values of the sample size n, where
m is kept fixed at 100
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Figure 4.3. Estimator efficiency for Exp. 1 under sample size n = 30, for 3 different values of
AUC (shown in legend). The smaller the AUC the more efficient the estimator.
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CHAPTER 5

Conclusion

The problem of estimating the threshold of a particular operating point on the ODC was consid-

ered. At the beginning, a heuristic procedure that utilizes the intersection between the empirical and

the true ODC was proposed; the mathematical analysis shows that it is asymptotically as efficient

as using only the operating point on the ODC. In practice we can, at best, approximate the true

ODC by a fitting procedure; we exploited the GLM for that purpose. The two sample quantiles at

an operating point on the fitted curve are no longer independent, and the best linear combination

is obtained by bootstrapping the current sample. Simulation results, under different distribution

configurations, show the superiority of the proposed estimator over the sample quantile from one

distribution.
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Appendix: Lemmas and Proofs.

The reader may refer to Sections 1 and 2 for the definitions of all the variables and quantities

used in the current section.

Lemma 2 (Ghosh —1971—). Suppose G′(ξp) exists and is strictly positive and pn = p+O(n−1/2),

then we have the following property for the sample pn-quantile

G−1
n (pn) = Mpn

− (Gn(ξp)− p)

G′(ξp)
+ op(n

−1/2), (5.1)

Mpn
= ξp +

pn − p

G′(ξp)
. (5.2)

If G has a continuous first derivative g in a neighborhood around ξp then the Lemma is true for the

more relaxed restriction, pn = p+ o(1) and with Mpn
being replaced by ξpn

(= G−1(pn)).

Lemma 3. Assume that there exist two random sequences Vn(ω) and Wn(ω), where Wn(ω) con-

verges weakly, defined on the same probability space, where

{ω : Vn ≤ t} ≡ {ω : Wn + op(1) ≤ t}, ∀ t.

Then

Vn = Wn + op(1).

Proof. For all ε > 0, the set {Vn ≤ x, Wn ≥ x+ ε} ≡ {Wn +Rn ≤ x, Wn ≥ x+ ε} ⊆ {Rn ≤ −ε};

the latter has a probability tending to zero, as n→∞, by the definition of op(1). Hence

limPr
n→∞

{Vn ≤ x, Wn ≥ x+ ε} = 0, ∀ ε > 0. (5.3)
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A similar argument leads to

limPr
n→∞

{Vn ≥ x+ ε, Wn ≤ x} = 0 ∀ ε > 0. (5.4)

The conditions (5.3) and (5.4), along with that Wn converges weakly—from the convergence of Gn

and from the assumption for Xn—establish the conditions of Lemma 1 of Ghosh (—1971—). Hence,

Vn −Wn
p→ 0 as was to be proved.

The last argument can be replaced by the following simpler one. By noticing that Wn+Rn
D→W

(by Slutsky’s theorem), then we have

limPr
n→∞

{Vn ≤ x} = limPr
n→∞

{Wn +Rn ≤ x}

= Pr{W ≤ x}.

Therefore, Vn
D→W,and hence Vn = W + op(1). But Wn = W + op(1), hence Vn = Wn + op(1).

We can see it in a third way by the following. Since the set equality is for every t, then it is

obvious that {ω : Vn ∈ B} ≡{ω : Wn ∈ B} ∀ Borel set B. Then Vn
a.s.
= Wn.

Lemma 4. Suppose G′(ξp) exists and is strictly positive and the random sequence Xn has the

property that n1/2(Xn − ξp) converges weakly, then

Gn(Xn) = Gn(ξp) +G′(ξp)(Xn − ξp) + op(n
−1/2).

Proof. The lemma is quite easy to prove, but we include the proof for the sake of completeness.

{ω : n1/2(Gn(Xn)− p) ≤ x} ≡ {ω : Xn ≤ G−1
n (p+ xn−1/2)}

≡ {ω : n1/2(Gn(ξp)− p) + n1/2G′(ξp)(Xn − ξp) + op(1) ≤ x}.

For the first set equivalence, see Serfling (1980, Sec. 1.1.4); the second is a direct substitution from

Lemma 2 and arrangements. Hence, by Lemma 3,

n1/2(Gn(Xn)− p) = n1/2(Gn(ξp)− p) + n1/2G′(ξp)(Xn − ξp) + op(1),
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and the Lemma follows directly from here.

A special case of the above Lemma, when Xn is the median of another distribution, was first

derived in Gastwirth (—1968—) using a different technique. We prefer the above method since it is

more general and does not need extra assumptions.

Lemma 5 (Generalization to Lemma 2). Suppose G′(ξp) exists and is strictly positive and n1/2(pn−

p) converges weakly, then we have an exactly similar expansion for the sample pn-quantile as in

Lemma 2, i.e.,

G−1
n (pn) = Mpn

− (Gn(ξp)− p)

G′(ξp)
+ op(n

−1/2),

Mpn
= ξp +

pn − p

G′(ξp)
.

with Mpn
is a r.v. rather than deterministic.

Proof. Since

{ω : n1/2(G−1
n (pn)− ξp) ≤ t} ≡ {ω : pn ≤ Gn(ξp + tn−1/2)}

≡ {ω : n1/2(pn − p) ≤ n1/2(Gn(ξp + tn−1/2)− p)},

then direct substitution from Lemma 4 with Xn = ξp + tn−1/2 (a degenerate r.v.) gives

{ω : n1/2(G−1
n (pn)− ξp) ≤ t} ≡ {ω :

n1/2(pn − p)

G′(ξp)
− n1/2(Gn(ξp)− p)

G′(ξp)
+ op(1) ≤ t}.

Then

n1/2(G−1
n (pn)− ξp) =

n1/2(pn − p)

G′(ξp)
− n1/2(Gn(ξp)− p)

G′(ξp)
+ op(1),

as was to be proved

Lemma 6 (Best Unbiased Linear Combination). If ξ̂ is unbiased for ξ1, with a covariance structure

Σ, then the best unbiased linear combination (under square loss) α′ξ̂ has the minimum variance of

1/(1′Σ−11) when α = (1′Σ−1)/(1′Σ−11).
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Proof. The lemma is quite easy to prove. To have α′ξ̂ unbiased ∀ ξ is equivalent to the constraint

α′1 =1. The variance σ2 of the linear combination α′ξ̂ can be written with Lagrange multiplier of

that constraint as

σ2 = α′Σα+ λ(α′1−1).

Direct differentiation and substitution gives the result.
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