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Abstract

The problem of binary classification is of great interest across many fields, including data mining, satellite imaging, and
medical diagnostics. The performance of a classifier is, mostly, measured in terms of the error rate, i.e., the total probability
of misclassification. A more general approach is to use the Receiver Operating Characteristic (ROC). The ROC is a plot of all
the possible values of one type of errors versus the other one. Very practical and easy-to-interpret summary measures can be
derived from such a curve, e.g., the Area Under the Curve (AUC), and the Partial Area Under the Curve (PAUC).

This dissertation studies the assessment of classification rules using the entire ROC space with no parametric assumptions.
That is, the present approach requires having no knowledge about the distribution of the data. In addition, when data are scarce
the classification rule should be designed and assessed from the single available data set. In the present regulatory setting for
public-policy making, e.g., in the area of medical diagnostics, the available data set is required to be split into two disjoint sets,
one fordesignand theother for assessment. In this dissertation, both strategies are studied. Moreover, the techniquesdeveloped
in thisdissertationassumenoparticular form for the classification rule tobeassessed: themethodology is general across classical
as well as novel modern architectures. The linear and quadratic discriminants used in the dissertation were selected, simply, for
demonstration purposes.

The contemporary use of the expression Computational Intelligence refers to a number of rapidly maturing branches of the
general field of artificial intelligence, including neural networks, fuzzy logic, evolutionary algorithms ...etc. Algorithms devel-
oped in these subfields to solve classification problems are, from a statistical point of view, nonparametric classification rules.
This dissertation may, therefore, provide critical assessment tools for such algorithms when they must be developed within a
setting in which data are scarce.
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List of Symbols

In this list the symbol s is a generic symbol to refer to any metric that assesses a classification rule. Thus, s can be the Error
Rate (Err), the AreaUnder the ROCCurve (AUC), or the Partial AreaUnder the ROCCurve (PAUC). References arementioned
for some symbols to indicate the first occurrence in the dissertation.

F −→ t A sample t sampled from a distribution F

F̂ Theempirical distribution, also calledMLE, of thedistributionF , i.e., putting 1/nmassonevery observation,where
n is the sample size.

F̂ −→ t∗ Bootstrap sampling, from the empirical distribution F̂ , by sampling with replacement.

t∗b The bth bootstrap sample replicated from the sample t.

ηt The classification rule η trained on the sample t.

ηt∗b The classification rule η trained on the bootstrap sample t∗b.

ηt(i) The classification rule η trained on the sample t with exclusion of the observation ti.

ht The log-likelihood ratio of the rule η trained on the set t.

EF Expectation over the population F .

EF̂ Expectation over the empirical distribution F̂ (= 1
n

n∑
i=1

(·)).

E∗ Expectation over bootstraps, which equals to lim
B→∞

1
B

B∑
b=1

(·).

EMC Expectation over Monte-Carlo (MC) trials, which equals to lim
M→∞

1
M

M∑
m=1

(·).

st The “true” performance of the classifier ηt, which is trained on the training set t, measured in the metric s. This is
also referred to as the performance “conditional” on that particular training set.

Et (st) The mean, over training sets, of st. The subscript t in Et is redundant, since the only source of variability for st is
the training sets, and it is included for emphasis.

Vart (st) The variance, over training sets, of st

ŝt An estimator of st. This estimator can be a function of only the training set t, i.e., ŝt = ŝt(t) (Chapters 2–5). It can
also be a function of both the training and testing sets; in such a case, for notational clarity we change t to tr and
write ŝtr = ŝtr(tr,ts) (Chapter 6).

�Et (st) An estimator of Et (st)

áVart (st) An estimator of Vart (st)

E(ŝt) Themeanof the estimator ŝt. There is no subscript for the operator E, i.e., the expectation is taken over training and
testing sets. When the expectation is taken over either the trainers, tr, or testers, ts, the operator E is subscripted.
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Var(ŝt) The variance of the estimator ŝt

E
(�Et st

)
The mean of the estimator �Et st

Var
(�Et st

)
The variance of the estimator �Et st

s Apparent estimator, i.e., the estimator obtained by training on the entire training set tr and then testing on the
entire same set (Section 2.2.1).

ŝ(SB) The simple bootstrap estimator for s (Section 2.2.4).

ŝ(RF ) The refined bootstrap estimator (Section 2.2.4.2).

ŝt∗b
(
F̂ (∗)

)
Themetric s after training on the bootstrap replicate b and testing on all of the observations F̂ (∗) that did not appear
in that replication.

ŝ(∗) A bootstrap estimator resulting from testing on the observations that did not appear in the bootstrap replication,
i.e., ŝ(∗) = E∗

(
ŝt∗b (F̂ (∗))

)
.

ŝ(1) The leave-one-out estimator, when s is the error rate (Section 2.2.4.1).

ŝ(1,1) The leave-pair-out estimator, when s is either theAUC or the PAUC (Section 3.3).

ŝ(.632) The .632 bootstrap estimator (Section 2.2.4.3).

ŝ(.632+) The .632+ bootstrap estimator (Section 2.2.4.4).

Ibi An indicator function that equals one when the observation i does not appear in the bootstrap b, and equals zero
otherwise.
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Preface

This preface serves as a road map to the dissertation. It introduces every chapter and indicates how the chapters are linked
together.

Chapter 1 is a literature review for the general problemof statistical learning. It gives a brief account of the statistical decision
theory necessary for understanding the general problem of regression and classification. It illustrates the unified principle of all
classification rules, i.e., the estimation of the posterior probability of the class to be predicted. The end of the chapter introduces
the ROC curve and the assessment problem.

Chapter 2 is an extension to the literature review chapter. It demonstrates different nonparametric techniques from the
statistics literature in estimating the mean and the variance of a statistic. Hence, it is a good introduction to the nonparamet-
ric assessment of a classification rule, since it is a statistic that is function of two data sets, a training set and a testing set. It
demonstrates, as well, the previous efforts in assessing classification rules in terms of the error rate, i.e., the probability of mis-
classification (PMC), as a performance metric.

Chapter 3 is an introduction to the work done in this dissertation, which is, mainly, represented in detail in the three subse-
quent chapters. This chapterdefines themainproblems that are considered in thisdissertation. Section3.2 gives an introduction
to how the current methods of assessing classifiers in terms of the error rate can be extended to the area under the ROC curve
(AUC). It illustrates, as well, the important issue of the bootstrap bias when resampling the training set. This chapter is the basis
for the article Yousef, Wagner and Loew (2004).

Chapter 4 is a contribution to the literature on the use of the AUC as a performance metric. In particular, it provides a
method for estimating the uncertainty of the estimator that estimates the mean performance of a classifier in terms of the AUC.
The main statistical tool in this chapter is the influence function. This chapter is the basis for the article Yousef, Wagner and
Loew (2005).

Chapter 5 introduces the Partial Area Under the ROC Curve (PAUC) as a proposed metric instead of the AUC, when some
information is available on the testing environment. This chapter analyzes the PAUC and shows the pros and cons of such a
metric. This chapter is the basis for the article Yousef (2013).

Chapter 6 concerns assessing classifiers from two independent data sets, as may be required in a public-policy-making
regulatory setting. The assessment of classifiers in mean and variance is derived mathematically and checked by simulation
studies. The methods developed in this chapter rely on the theory ofU-statistics. This chapter is the basis for the article Yousef,
Wagner and Loew (2006).

Chapter 7 provides a brief summary of the dissertation together with some final conclusions. It discusses, as well, possible
future work and natural extensions to this dissertation.

xvii





CHAPTER 1

Classification and Regression: Literature Review

1.1. Introduction and Terminology

In the present chapter somebasic concepts and terminology necessary for the sequel will be formally introduced. Theworld
of variables can be categorized into two categories: deterministic variables and random variables. A deterministic variable takes
a definite value; the same value will be the outcome if the experiment that yielded this value is rerun. On contrary, a random
variable is a variable that takes a non-definite value with a probability value.

Definition 1.1. A random variableX is a function from a sample space S into the real numbersR, that associates a real number,
x=X(s), with each possible outcome s ∈S.

Details on the topic canbe found inCasella andBerger (2002, Ch. 1). Formore rigorous treatment of randomvariables based
on measure theoretic approach see Billingsley (1995). Variables can be categorized as well, based on value, into: quantitative
or metric, qualitative or categorical, and ordered categorical A quantitative variable takes a value on R and it can be discrete or
continuous. A qualitative or categorical variable does not necessarily take a numerical value; rather it takes a value from a finite
set. E.g., the set G = {Red,Green,Blue} is a set of possible qualitative values that can be assigned to a color. An ordered categori-
cal variable is a categorical variable with relative algebraic relations among the values. E.g., the set G = {Small,Medium,Large}
includes ordered categorical values.

Variables in a particular process are related to each other in a certainmanner. When variables are random the process is said
to be stochastic, i.e., when the inputs of this process have some specified values there is no deterministic value for the output,
rather a probabilistic one. The output in this case is a random variable.

Wenext consider the general problemof statistical learning algorithms. Consider a sample consisting of a number of cases—
thewords cases andobservationsmaybeusedexchangeably—,where eachcase is composedof the set of inputs thatwill be given
to the algorithm together with the corresponding output. Such a sample provides themeans for the algorithm to learn during its
so-called “design” stage. The goal of this learning or design stage is to understand as much as possible how the output is related
to the inputs in these observations, so that when a new set of inputs is given in the future the algorithm will have some means
of predicting the corresponding output. The above terminology has been borrowed from the field of machine learning. This
problem is originally from the field of statistical decision theory, where the terminology is somewhat different. In the latter field,
the inputs are called the predictors and the output is called the response. When the output is quantitative the learning algorithm
is called regression; when the output is categorical or ordered categorical the learning algorithm is called classification. In the
engineering communities that work on the pattern classification problem, the terms input features and output class are used
respectively. The learning process in that setting is called training and the algorithm is called the classifier.

Definition 1.2. Learning is the process of estimating an unknown input-output dependency or structure of a system using a
limited number of observations.

Statistical learning is crucial to many applications. For example, In the medical imaging field, a tumor on a mammogram
must be classified asmalignant or benign. This is an exampleof prediction, regardless ofwhether it is donebya radiologist or by a
computer algorithm (Computer Aided Diagnosis or CAD). In either case the prediction is done based on learning from previous
mammograms. The features, i.e., predictors, in this case may be the size of the tumor, its density, various shape parameters,
etc. The output, i.e., response, is a categorical one which belongs to the set: G = {benign,malignant}. There are so many such
examples in biology and medicine that it is almost a field unto itself, i.e., biostatistics. The task may be diagnostic as in the
mammographic example, or prognosticwhere, for example, one estimates the probability of occurrence of a second heart attack
for a particular patient who has had a previous one. All of these examples involve a prediction step based on previous learning. A
wide range of commercial andmilitary applications arises in the field of satellite imaging. Predictors in this case canbemeasures
from the image spectrum, while the response can be the type of land or crop or vegetation of which the image was taken

Before going through some mathematical details, it is convenient to introduce some commonly used notation. A random
variable—or a random vector—is referred to by an upper-case letter, e.g., X . An instance, or observation, of that variable is
referred to by a lower-case letter, e.g., x. A collection ofN observations for the p-dimensional random vectorX is collected into
an N ×P matrix and represented by a bold upper-case X. A lower-case bold letter x is reserved for describing a vector of any
N-observations of a variable, even a tuple consisting of non-homogeneous types. The main notation in the sequel will be as
follows: t :

{
ti =

(
xi,yi

)}
represents an n-case training data set, i.e., one on which the learning mechanism will execute. Every
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sample case ti of this set represents a tuple of the predictors xi represented in a p-dimensional vector, and the corresponding
response variable yi. All theN observations xi’s may be written in a singleN ×P matrix X, while all the observations yi may be
written in a vector y.

1.2. Statistical Decision Theory

This section provides an introduction to statistical decision theory, which serves as the foundation of statistical learning.
If a random vector X and a random variableY have a joint probability density fX,Y (x,y), the problem is defined as follows:
how to predict the variable Y from an observed value for the variableX . In this section we assume having a full knowledge of
the joint density fX,Y , so there is no learning yet (Definition 1.2). The prediction function η(X) is required to have minimum
average prediction error. The prediction error should be defined in terms of some loss functionL(Y,η(X)) that penalizes for any
deviation in the predicted value of the response from the correct value. Define the predicted value by:

Ŷ = η(X) (1.1)
The riskof this prediction function is definedby theaverage loss, according to thedefined loss function, for the caseof prediction:

R(η) =E [
L(Y,Ŷ )

]
(1.2)

For instance, some constraint will be imposed on the response Y by assuming it, e.g., to be a quantitative variable. This is
the starting point of the statistical branch of regression, where (1.1) is the regression function. A form should be assumed for the
loss function. A mathematically convenient and widely used form is the squared-error loss function:

L
(
Y,η (X)

)= (
Y −η (X)

)2 (1.3)
In this case (1.2) becomes:

R(η) =
∫ (

Y −η(X)
)2dFX,Y (X,Y ) (1.4)

=EX
[
EY |X

[(
Y −η(X)

)2|X]]
(1.5)

hence, (1.5) is minimized by minimizing the inner expectation over every possible value for the variable X . Ordinary vector
calculus solves the minimization for η(X) and gives:

η(X) = arg min
η(X)

(
EY |X

[(
Y −η(X)

)2|X])
(1.6)

=EY [Y |X] (1.7)
This means that if the joint distribution for the response and predictor is known, the best regression function in the sense of
minimizing the risk is the expectation of the response conditional on the predictor. In that case the risk of regression in (1.5) will
be:

Rmin(η) =EX [Var[Y |X]]

Recalling (1.2), and lifting the constraint on the response being quantitative, and setting another constraint by assuming it
to be a qualitative (or categorical) variable gives rise to the classification problem. Now the loss function cannot be the squared-
error loss function defined in (1.3), since this has no meaning for categorical variables. Since Y may take now a qualitative value
from a set of size k, (see Section 1.1), the loss function can be defined by the matrix

L(Y,η (X)) = ((
cij

))
, 1 < i, j < k (1.8)

where the non-negative element cij is the cost, the penalty or the price, paid for classifying an observation as yj when it belongs
to yi. In the field of medical decision making this is often called the utility matrix. Under this assumption, the risk defined by
(1.2) can be rewritten for the categorical variables to be:

R(η) =EXEY |X
[
L

(
Y,η (X)

)]
(1.9)

=EX

[
k∑
i=1
cij Pr

[
Y = yi|X

]]
(1.10)

where Pr[Y |X] is the probability mass function for Y conditional onX . Then the conditional risk for decision yj

R(j,η) =
k∑
i=1
cij Pr

[
Y = yi|X

]
(1.11)

is the expected loss when classifying an observation as belonging to yj and the expectation is taken over all the possible values
of the response. Again, (1.10) can be minimized by minimizing the inner expectation to give:

η(X) = argmin
j

[
k∑
i=1
cij Pr

[
Y = yi|X

]]
(1.12)
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Expressing the conditional probability of the response in terms of Bayes law and substituting in (1.12) gives:

η(X) = argmin
j

k∑
i=1
cijfX

(
X |Y = yi

)
Pr

[
yi

]
(1.13)

Pr
[
yi

]
is the prior probability for yj while Pr

[
yj |X

]
is the posterior probability, i.e., the probability that the observed case be-

longs to yj , given the value ofX . This is what statisticians call Bayes classification, or Bayes decision rule or alternatively, what
engineers call the Bayes classifier.

Some special cases here may be of interest. The first case is when equal costs are assigned to all misclassifications and there
is no cost for correct classification; this is called the 0-1 cost function. This reduces(1.12) to:

η(X) = argmin
j

[
1−Pr

[
Y = yj |X

]]
(1.14)

= argmax
j

[
Pr

[
Y = yj |X

]]
(1.15)

The rule thus is to classify the sample case to the class having maximum posterior probability. Another special case of great
interest is binary classification, i.e., the case of k = 2. In this case (1.12) reduces to:

Pr
[
y1|X

]
Pr

[
y2|X

] y1

≷
y2

(c22 −c21)

(c11 −c12)
(1.16)

Alternatively, this can be expressed as :
fX (X =x|y1)

fX (X =x|y2)

y1

≷
y2

Pr
[
y2

]
(c22 −c21)

Pr
[
y1

]
(c11 −c12)

(1.17)

The decision taken in (1.12) has the minimum risk, which can be calculated by substituting back in (1.10) to give:

Rmin(η) =
k∑
i=1

∫
X
ci,j(X) Pr

[
yi

]
dFX (X |yi) (1.18)

where j(X) is the class decision η(X). For binary classification and where there is no cost for a correct decision, i.e., c11 = c22 = 0,
this reduces to:

Rmin(η) = c12 Pr
[
y1

] ∫
R2

dFX (X |y1)+c21 Pr
[
y2

] ∫
R1

dFX (X |y2) (1.19)

where each of R1 and R2 is the predictor hyperspace over which the optimum decision (1.16) predicts as class 1 or class 2 re-
spectively. The binary classification problem will be revisited in Chapter 3 for a more detailed treatment. Latter, the response
variable Y may be referred to Ω in case of classification. To follow the notation of Section 1.1 the response of an observation is
assigned a value ωi, i= 1, . . . ,k to express a certain class.

To recap, this section emphasizes the fact that there is no distinction between regression and classification from the con-
ceptual point of view. Each minimizes the risk of predicting the response variable for an observation, i.e., a sample case with
known predictor(s). If the joint probability distribution function for the response and predictors is known, it is just a matter of
direct substitution in the above results. If the joint distribution is known but its parameters are not known, a learning process
is used to estimate those parameters from a training sample t by methods of statistical inference. However, if the joint distri-
bution is unknown, this gives rise to two different branches of prediction. These two branches are parametric regression (or
classification)—where the regression or classification function is modeled and a training sample is used to build that model—
and nonparametric regression (or classification), where no particular parametricmodel is assumed. Subsequent sections in this
chapter give introductions to these techniques.

1.3. Parametric Regression and Classification

The prediction method introduced in Section 1.2 assumes, as indicated, that the joint density of the response and the pre-
dictor is known. If such knowledge exists, all the methods revolve around modeling the regression function (1.1) in the case of
regression or the posterior probabilities in (1.12) in the case of classification.

1.3.1. LinearModels

In linear model (LM) theory, Y is assumed to be in the form:
Y =E [Y ]+e (1.20)

=α+X ′β+e (1.21)
where the randomness of Y comes only from e, and it is assumed that the conditional expectation of Y is linear in the predictors
X . The two basic assumptions in the theory are the zero mean and constant variance of the random error component e. The
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regression function (1.1) is then written as:
η(X) =α+X ′β (1.22)

More generally, still a linear model, it can be rewritten as:
η(X) =X ′

newβ, (1.23)
X ′

new = (
f1 (X) , . . . ,fd (X)

)
(1.24)

where the predictor X is replaced by a new d-dimensional vector, Xnew, whose elements are scalar functions of the random
vectorX .

The intercept α in (1.22) may be modeled, if needed, in terms of (1.23) by setting f1 (X) = 1. Equation (1.23) can be seen as
equivalent to (1.22), whereX has been transformed toXnew which became the new predictor on which Y will be regressed.

Nowβmust be estimated, and this point estimation is done for someobserved values of the predictor. Writing the equations
for n observed values gives:

y = X′β+e (1.25)
If (1.25) is solved for β to give the least sum of squares for the components of error vector e, this will give, as expected, the same
result as if we approximated the conditional expectation of Y by the set of observations y. Solving either way gives:

β̂ = (
XX′)−1 Xy (1.26)

Then the prediction of Y is done by estimating its expectation which is given by:�η(X) = �E [Y ] =X ′β̂ (1.27)
For short notation we always write Ŷ instead of �E [Y ].

Nothing up to this point involves statistical inference. This is just fitting a mathematical model using the squared-error loss
function. Statistical inference starts when considering the randomerror vector e and the effect of that on the confidence interval
for β̂ and the confidence inpredicted values of the response forparticular predictor variable, or anyotherneeded inference. All of
these important questions are answered by the theory of linearmodels. Bowerman andO’Connell (1990) is a very good reference
for an applied approach to linear models, without any mathematical proofs. For a theoretical approach and derivations the
reader is referred to Christensen (2002), Graybill (1976), and Rencher (2000). It is remarkable that if the joint distribution for the
response and the predictor is multinormal, the linear model assumption (1.21) is an exact expression for the random variable
Y . This fact arises from the fact that the conditional expectation for the multinormal distribution is linear in the conditional
variable. That is, by assuming that (

Y
X

)
∼N (

µ,Σ
)
, where (1.28)

µ=
(
µY
µX

)
, Σ=

(
Σ11 Σ12

Σ21 Σ22

)
, (1.29)

then the conditional expectation of Y onX is given by:
E [Y |X =x] =µY +Σ12Σ

−1
22 (x−µX ) (1.30)

For more details on the multinormal properties, see Anderson (2003).

In the case of classification the classes are categorical variables but a dummy variable can be used as coding for the class
labels. Then a linear regression is carried out for this dummy variable on the predictors. A drawback of this approach is what is
called class masking, i.e., if more than two classes are used, one or more can be masked by others and they may not be assigned
to any of the observations in prediction. For a clear example of masking see Hastie, Tibshirani and Friedman (2001, Sec. 4.2).

1.3.2. Generalized LinearModels

In linear models the response variable is directly related to the regression function by a linear expression of the form of
(1.21). In many cases a model can be improved by indirectly relating the response to the predictor through a linear model—
some times it is necessary as will be shown for the classification problem. This is done through a transformation or link function
g by assuming:

g(E [Y ]) =X ′β (1.31)
Now it is the transformed expectation that is modeled linearly. Hence, linear models are merely a special case of the generalized
linear models when the link function is the identity function g(E [Y ]) =E [Y ].

A very useful link function is the logit function defined by:

g(µ) = log
µ

1−µ, 0 <µ< 1 (1.32)
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Through this function the regression function is modeled in terms of the predictor as:

E [Y ] = exp(X ′β)

1+exp(X ′β)
(1.33)

which is known as logistic regression. Equation (1.33) implies a constraint on the response Y , i.e., it must satisfy 0 <E [Y ] < 1,
a feature that makes logistic regression an ideal approach for modeling the posterior probabilities in (1.12) for the classification
problem. Equation (1.32) models the two-class problem, i.e., binary classification, by considering the new responses Y1 and Y2

to be defined in terms of the old responses ω1 and ω2, the classes, as:
Y1 = Pr[ω1|X] , (1.34)
Y2 = Pr[ω2|X] = 1−Pr[ω1|X] (1.35)

The general case of the k-class problem can be modeled usingK−1 equations, because of the constraint
∑
iPr[ωi|X] = 1, as:

log
Pr[ωi|X =x]

Pr
[
ωk|X =x] =x′βi, i= 1, . . . ,K−1 (1.36)

Alternatively, (1.36) can be rewritten as:

Pr[ωi|X =x] = exp
(
x′βi

)
1+

K−1∑
j=1

exp
(
x′βj

) , 1 ≤ i≤K−1, (1.37)

Pr
[
ωk|X =x]= 1

1+
K−1∑
j=1

exp
(
x′βj

) (1.38)

The question now is how to estimate βi ∀ i. The multinomial distribution for modeling observations is appropriate here.
For illustration, consider the case of binary classification; the log-likelihood for the n-observations can then be written as:

l(β) =
n∑
i=1

{
yilogPr

[
ω1|Xi,β

]+(1−yi) log(1−Pr
[
ω1|Xi,β

]}
(1.39)

=
n∑
i=1

{
yix

′
iβ− log(1+ex′

iβ)
}

(1.40)

To maximize this likelihood, the first derivative is set to zero to obtain:
∂l

(
β

)
∂β

=
n∑
i=1
xi(yi−

ex
′
iβ

1+ex′
iβ

)
set= 0 (1.41)

This is a set of k equations, where the vectorX can be the original predictor (x1, . . . ,xp)′ or any transformation (f1(X), . . . ,fd(X))′
as in (1.24). Equation (1.41) is a set of non-linear equations, and can by solved by iterative numerical methods like the Newton-
Raphson algorithm. For more details with numerical examples see Hastie, Tibshirani and Friedman (2001, Sec. 4.4) or Casella
and Berger (2002, Sec. 12.3).

It can be noted that (1.39) is valid under the assumption of the following general distribution:
f (X) =ϕ(θi,γ)h(X,γ)exp(θ′iX) (1.42)

with probability pi, i= 1,2, p1 +p2 = 1, which is the exponential family. So logistic regression is no longer an approximation for
the posterior class probability if the distribution belongs to the exponential family. For insightful comparison between logistic
regression and the Bayes classifier under the multinormal assumption see Efron (1975).

It is very important to mention that logistic regression, and all subsequent classification methods, assume equal a priori
probabilities. Then the ratio between theposterior probabilitieswill be the sameas the ratio between the densities that appear in
(1.13). Hence, the estimated posterior probabilities from any classification method are used in (1.13) as if they are the estimated
densities.

1.3.3. Non-linearModels

The link function in the generalized linear models is modeled linearly in the predictors, (1.31). Consequently, the response
variable is modeled as a non-linear function. In contrast to the linear models described in Section 1.3.1, in non-linear models
the response can be modeled non-linearly right from the beginning, without the need for a link function.
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1.4. Nonparametric Regression and Classification

In contrast to parametric regression, the regression function (1.1) is not modeled parametrically, i.e., there is no particular
parametric form to be imposed on the function. Nonparametric regression is a versatile and flexible method of exploring the
relationship of two variables. It may appear that this technique is more efficient than the linear models, but this is not the case.
Linear models and nonparametric models can be thought of as two different techniques in the analyst’s toolbox. If there is an
a priori reason to believe that the data follow a parametric form, then linear models or parametric regression in general may
provide an argument for an optimal choice. If there is no prior knowledge about the parametric form the data may follow or no
prior information about the physical phenomenon that generated the data, there may be no choice other than nonparametric
regression.

There are many nonparametric techniques proposed in the statistical literature. Some of these techniques have also been
developed in the engineering community under different names, e.g., artificial neural networks. What was said above, when
comparing parametric and nonparametric methods, can also be said when comparing nonparametric methods to each other.
None can be preferred overall across all situations.

This section introduces some of the nonparametric regression and classification methods. The purpose is not to present a
survey as much as to introduce the topic and show how it relates with the parametric methods to serve one purpose, predicting
a response variable, categorical or quantitative. An excellent comprehensive source for regression and classification methods,
with practical approaches and illustrative examples, is Hastie, Tibshirani and Friedman (2001).

1.4.1. Smoothing Techniques

Smoothing is a tool for summarizing in anonparametricway a trendbetweena response andapredictor such that the result-
ing relationship is less variable than the original response, hence the name smoothing. When the predictor is unidimensional,
the smoothing is called scatter-plot smoothing. In this section, some methods used in scatter-plot smoothing are considered.
These smoothing methods do not succeed in higher dimensionality. This is one bad aspect of what is called the curse of dimen-
sionality, which will be discussed in Section 1.7.

1.4.1.1. K-Nearest Neighbor

The regression function (1.1) is estimated in theK-nearest neighbor approach by:

η(x) = 1

n

n∑
i=1
Wi(x)yi, (1.43)

Wi(x) =
{
n/k i ∈ Jx = {

i :xi ∈Nk(x)
}

0 otherwise
(1.44)

whereNk(x) is the set consisting of the nearest k points to the point x. So in the case of regression, this technique approximates
the conditional mean, i.e., the regression function that gives minimum risk, by local averaging for the response Y .

In the case of classification, the posterior probability is estimated by:

Pr
[
ωj |x

]= 1

n

n∑
i=1
Wi(x)Iωi=ωj (1.45)

and I is the indicator function defined by:

Icond =
{

1 cond is True
0 cond is False

(1.46)

That is, replacing the continuous response in (1.43) by an indicator function for each class given each point. So, the posterior
probability is approximated by a frequency of occurrence in a k-point neighborhood.

1.4.1.2. Nearest Neighbor

This is a special case of theK-nearest neighbor method where k = 1. It can be thought of as narrowing the windowW on
which regression is carried out. In effect, this makes the regression function or the classifier more complex because it is trying
to estimate the distribution at each point.

1.4.1.3. Kernel Smoothing

In this approach a kernel smoothing function is assumed. This means that a weighting and convolution (or mathematical
smoothing) is carried out for the points in the neighborhood of the predicted point according to the chosen kernel function.
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Formally this is expressed as:

η(x) =
n∑
i=1
yi

 K
(
x−xi
hx

)
n∑

i′=1
K

(
x−xi′
hx

)
 (1.47)

Choosing the band-width hx of the kernel function is not an easy task. Usually it is done numerically by cross-validation. It
is worth remarking that K-nearest neighbor smoothing is nothing but a kernel smoothing for which the kernel function is an
unsymmetrical flat window spanning the range of theK-nearest neighbors of the point x. The kernel (1.47) is called Nadaraya-
Watson kernel.

Historically, Parzen (1962) first introduced the window method density function estimation; then his work was pioneered
by Nadaraya (1964) and Watson (1964) in regression.

1.4.2. Additive Models

Recalling (1.23) and noticing that the function fi(X) is a scalar parametric function of the whole predictor shows that linear
models are parametric additive models. By dropping the parametric assumption and letting each scalar function be a function
of just one element of the predictor, i.e.,Xi, allows defining a new nonparametric regression method, namely additive models,
as:

η(x) =α+
p∑
i=1
fi(Xi) (1.48)

where the predictor is of dimension p. The response variable itself, Y , is modeled as in (1.20) by assuming zero mean and
constant variance for the random component e. Then, fi(Xi) is fit by any smoothing method defined in Section 1.4.1. Every
function fi(Xi) fits the value of the responseminus the contribution of the other p−1 functions from the previous iteration. This
is called the back-fitting algorithm described in Hastie and Tibshirani (1990, Sec. 4.3)

1.4.3. Generalized Additive Models

Generalized additive models can be developed in a way analogous to how generalized linear models were developed above,
i.e., by working with a transformation of the response variable, hence the name generalized additive models (GAM). Equation
(1.48) describes the regression function as an additive model; alternatively it can be described through another link function:

g
(
η(x)

)=α+
p∑
i=1
fi(Xi) (1.49)

Again, if a logit function is used the model can be used for classification exactly as was done in the case of generalized linear
models. Rewriting the score equations (1.41) for the GAM, using the posterior probabilities as the response variable, produces
thenonparametric classificationmethodusing theGAM.Details of fitting themodel canbe found inHastie andTibshirani (1990,
Sec. 4.5 and Ch. 6).

1.4.4. Projection Pursuit Regression

Projection Pursuit Regression (PPR), introduced by Friedman and Stuetzle (1981), is a direct attack on the dimensionality
problem, since it considers the regression function as a summation of functions, each of which is a function of a projection of
the whole predictor onto a direction (specified by some unit vector). Formally it is expressed as:

η(x) =
k∑
i=1
gi(α

′
ix) (1.50)

The function gi for every selection for the directionαi is to be fit by a smoother in the new single variableα′
ix. It should be noted

that (1.50) assumes that the function gi(α′
iX), named the ridge function, is constant along any direction perpendicular to αi.

Fitting the model is done by iteratively finding the best directions αi’s that minimize(s) the residual sum square of errors, hence
the name pursuit. Details of fitting the model and finding the best projection directions can be found in Friedman and Stuetzle
(1981) and Hastie, Tibshirani and Friedman (2001).

In (1.50) by deliberately setting each unit vector αi to have zero components except αii = 1, reduces the projection pursuit
method to additive models. Moreover, and interestingly as well, by introducing the logit link function to the regression function
η(x) in (1.50) suits the classification problem exactly as done in the GAM. This turns out to be exactly the same as the single-
hidden-layer neural network, as will be presented in the next section.
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Figure 1.1. Schematic diagram for a single hidden layer neural network.
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Figure 1.2. Sigmoid function under different learning rate α

1.4.5. Neural Networks

Neural Networks (NN) have evolved in the engineering community since the 1950s. As illustrated in Figure 1.1, a neural
network can be considered as a process for modeling the output in terms of a linear combination of the inputs.

The set of p input features, i.e., thepredictor componentsX1, . . . ,Xp, areweighted linearly to formanewset ofM arguments,
Z1, . . . ,ZM , that go through the sigmoid function σ. The output of the sigmoid functions accounts for a hidden layer consisting
ofM intermediate values. Then theseM hidden values are weighted linearly to form a new set ofK arguments that go through
the final output functions whose output is the response variables Y1, . . . ,YK . This can be expressed mathematically in the form:

Zm =σ(αom+α′
mX), m= 1,2, . . . ,M, (1.51)

Yk = fk
(
β0k+

M∑
m=1

βmkZm

)
, k = 1,2, . . . ,K (1.52)

Figure 1.2 shows the function under different values of α (called learning rate below).
The sigmoid function is defined by:

σ(µ) = 1

1+e−µ (1.53)

Equation (1.52) shows that if the function f is chosen to be the identity function, i.e., f (µ) =µ, the neural network is simply
a special case of the projection pursuit method defined in (1.50), where the sigmoid function has been explicitly imposed on the
model rather than being developed by any smoothingmechanism as in PPR. This is what is donewhen the output of the network
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is quantitative. When it is categorical, i.e., the case of classification, the contemporary trend is to model the function f as:

fk(µk) = eµk

K∑
k′=1

eµk′
(1.54)

In that case each output node models the posterior probability Pr
[
ωk|X

]
, which is exactly what is done by the multi-logistic

regression link function defined in (1.32). Again, the model will be an extension to the generalized additive models as defined at
the end of Section 1.4.4. Excellent references for neural networks are Bishop (1995) and Ripley (1996). We conclude this section
by quoting the following statement from Hastie, Tibshirani and Friedman (2001):

“There has been a great deal of hype surrounding neural networks,making them seemmagical andmysterious.
As we make clear in this section, they are just nonlinear statistical models, much like the projection pursuit
regression model discussed above.”

1.5. Computational Intelligence

The term computational intelligence was first coined by Bezdek (1992) and Bezdek (1994):
“A system is computationally intelligent when it: deals only with numerical (low-level) data, has a pattern
recognition component, and does not use knowledge in the AI (Artificial Intelligence) sense; and addition-
ally, when it (begins to) exhibit (i) computational adaptivity; (ii) computational fault tolerance; (iii) speed
approaching human-like turnaround, and (iv) error rates that approximate human performance.”

Since that time the term Computational Intelligence (CI) has been accepted as a generic term to the field that combine
Neural Networks, Fuzzy Logic, and Evolutionary Algorithms; see Schwefel, Wegener and Weinert (2003) and Zimmermann et al.
(2002). As a still-developing field, CI may incorporate other methodologies as a coherent part. In Engelbrecht (2002), the area
of Swarm Detection is considered as a peer paradigm to the other three mentioned above.

In the spirit of what has been discussed in the preceding sections, these methods assume nothing about the data distribu-
tions; they try to approach the solution by merely dealing with the data, i.e., numbers (c.f. the definition above). Hence, the
CI methods, from a purely statistical point of view, are considered as nonparametric methods. Sections 1.4.4 and 1.4.5 illus-
trated, mathematically, how Neural Networks, a basic building block in the CI field, is a special case of the projection pursuit, a
nonparametric regression method.

1.6. No overall Winner among All Methods

This statement is important enough tobe emphasizedunder a separate title, even though it has been touchedupon through-
out previous sections. If there is no prior information for the joint distribution between the response and the predictor, and if
there is no prior information about the phenomenon to which that regression or classification will be applied, there is no overall
winner among regression or classification techniques. If one classification method is found to outperform others in some ap-
plication, this is likely to be limited to that very situation or that specific kind of problem; it may be beaten by other methods
for other situations. In the engineering community, this concept is referred to as the No-Free-Lunch Theorem (see Duda, Hart
and Stork, 2001, Sec. 9.2). This situation holds because each method makes different assumptions about the application or the
process being modeled, and not all real-life applications are the same. If one or more of the assumptions are not satisfied in a
given application, the performance will not be optimal in that setting.

1.7. Curse of Dimensionality and Dimensionality Reduction

In general, smoothing is difficult to implement in higher dimensions. This is because for a fixed number of observations
available, the volume size needed to cover a particular percentage of the total number of observations increases by a power law,
and thus exponentially, with dimensionality. This makes it prohibitive to include the same sufficient number of observations
within a small neighborhood, or bandwidth, for a sample case to smooth the response. E.g., consider a unit hyper-cube in the p-
dimensional subspace containing uniformly distributed observations; the percentage of the points located inside a hyper-cube
with side length l is lp. This means, if the suitable band-width for a certain smoother is l, the effective number of sample cases
in the p-dimensional problem will go as the power 1/p. This deteriorates the performance dramatically for p higher than 3. This
is why the additive model, Section 1.4.2, and its variants are expressed as summation of functions of just one dimension. This
single dimension may be just a component of the predictor or a linear combination.

A very crucial sub-field in statistical learning is dimensionality reduction; alternatively it is called feature selection in the
engineering community. Qualitatively speaking, this means selecting those predictor components that best summarize the
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relationship between the response and predictor. In real-life problems, some features are statistically dependent on others; this
is referred to as multi-collinearity. On the other hand, there may also be some components that are statistically independent
from the response. These add no additional information to the problem at all; thus they serve only as a source of noise

This is a rapidly maturing sub-field. A remarkable publication in the statistics literature in this regard is that by Li (1991).
It introduces the Sliced Inverse Regression (SIR), in which each predictor component is regressed on the response; hence the
name inverse regression. In that sense, the problem is reduced from regressing a single response on a p-dimensional predictor
to regressing p-responses on a single-dimensional new predictor, which is far simpler than the former.

1.8. Unsupervised Learning

It should be noticed that the formal definition of the learning process, discussed thus far in the present chapter, assumed the
existence of a training data set, name it, t :

{
ti =

(
xi,yi

)}
. Each element ti, or sample case, in this set has an already known value

for the response variable; this is what enables the learning process to develop the relationship between the predictor and the
response. This is what is called supervised learning. On the contrary, in some applications the available data set is described by
t : {ti =xi} without any additional information. This situation is called unsupervised learning. The objective in such a situation
is to understand the structure of the data from the available empirical probability distribution of the points xi. For the special
case where the data come from different classes, the data will be represented in the hyper p-dimensional subspace , to some
extent, as disjoint clouds of data. The task in this case is called clustering, i.e., trying to identify those classes that best describe,
in some sense, the current available data. More formally, if the available data set is X, the objective is to find the class vector
Ω= [ω1, . . . ,ωk]′ such that a criterion J (X,Ω) is minimized:

Ω= argminJ (X,Ω) (1.55)
Different criteria give rise to different clustering algorithms. More discussion on unsupervised learning and clustering can be
found in Duda, Hart and Stork (2001); Fukunaga (1990); Hastie, Tibshirani and Friedman (2001). This dissertation is concerned
with the problem of supervised learning.

1.9. Performance of Classification Rules

Fromwhat has beendiscusseduntil now, there is not any conceptual differencebetween regression and classification for the
problem of supervised learning. Abstractly, both aim to achieve the minimum risk under a certain loss function for predicting a
response from a particular predictor. If the special case of classification is considered, there should be some metric to assess the
performance of the classification rule. Said differently, if several classifiers are competing in the same problem, which is better?
One natural answer is to consider the risk of each classifier, as was defined in (1.10).

A special case of classification, which is of great interest in many applications, is binary classification, where the number of
classes is just two. In that case the risk of each classifier is reduced to (1.19), which can be rewritten as:

Rmin = c12P1e1 +c21P2e2 (1.56)
where e1 is the probability of classifying a case as belonging to class 2 when it belongs to class 1, and e2 is vice versa.

In the feature subspace, the regions of classification have the dimensionality p, and it is very difficult to calculate the error
components from multi-dimensional integration. It is easier to look at (1.17) as:

h(x)
ω1
≷
ω2

th, where (1.57)

h(x) = log
fX (X =x|ω1)

fX (X =x|ω2)
, (1.58)

th= log
Pr[ω1] (c22 −c21)

Pr[ω2] (c11 −c12)
, (1.59)

and h(X) is called the log-likelihood ratio. Now the log-likelihood ratio itself is a random variable whose variability comes from
the feature vectorX , and has a PDF conditional on the true class. This is shown in Figure 1.3. It can be easily shown that the two
curves in Figure 1.3 cross at h(X) = 0, where the threshold is zero. In this case the two error components, appearing in (1.56),
are written equivalently as:

e1 =
∫ th

−∞
fh (h(x)|ω1)dh(x), (1.60a)

e2 =
∫ ∞

th
fh (h(x)|ω2)dh(x) (1.60b)
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Figure 1.3. The probability of log-likelihood ratio conditional under each class. The two components of error are indicated as
the FPF and FNF, the conventional terminology in medical imaging.

Figure 1.4. ROC curves for two different classifiers. ROC1 is better than ROC2, since for any error component value, the other
component of classifier 1 is less than that one of classifier 2.

Now assume the classifier is trained under the condition of equal prevalence and cost, i.e., the threshold is zero. In other
environments there will be different a priori probabilities yielding to different threshold values. The error is not a sufficient
metric now, since it is function of a single fixed threshold. A more general way to assess a classifier is provided by the Receiver
Operating Characteristic (ROC) curve. This is a plot for the two components of error, e1 and e2 under different threshold values.
It is conventional in medical imaging to refer to e1 as the False Negative Fraction (FNF), and e2 as the False Positive Fraction
(FPF). This is because diseased patients typically have a higher output value for a test than non-diseased patients. For example,
a patient belonging to class 1 whose test output value is less than the threshold setting for the test will be called “test negative”
while the patient is in fact in the diseased class. This is a false negative decision; hence the name FNF. The situation is reversed
for the other error component.

Since the classification problem now can be seen in terms of the log-likelihood, it is apparent that the error components
are integrals over a particular PDF. Therefore the resulting ROC is a monotonically non-decreasing function. A convention in
medical imaging is to plot the TPF = 1−FNF vs. the FPF . In that case, the farther apart the two distributions of the log-
likelihood function from each other, the higher the ROC curve and the larger the area under the curve (AUC). Figure 1.4 shows
ROC curves for two different classifiers.
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The first one performs better since it has a lower value of e2 at each value of e1. Thus, the first classifier unambiguously
separates the two classes better than the second one. Also, the AUC for the first classifier is larger than that for the second one.
AUC can be thought of as one summary metric for the ROC curve.

Formally the AUC is given by:

AUC =
∫ 1

0
TPF d(FPF ) (1.61)

If two ROC curves cross, this means each is better than the other for a certain range of the threshold setting, but it is worse in
another range. In that case some other metric can be used, such as the partial area under the ROC curve in a specified region
(Chapter 5).

The two components of error in (1.56), or the summarymetric AUC in (1.61), are the parametric forms of thesemetrics. That
is, these metrics can be calculated by these equations if the posterior probabilities are known parametrically, e.g., in the case of
the Bayes classifier or by parametric regression techniques as in Section 1.3.

On the contrary, if the posterior probabilities are not known in a parametric form, the error rates can be estimated only nu-
merically from a given data set, called the testing data set. This is done by assigning equal probabilitymass for each sample case,
since this is theMaximumLikelihood Estimation (MLE) for the probabilitymass function under the nonparametric distribution.
This can be proven by maximizing the likelihood function:

L(F ) =
n∏
i=1
pi (1.62)

under the constraint Σipi = 1. The likelihood (1.62) can be rewritten, by considering this constraint, using a Lagrange multiplier
as:

L(F ) =
n∏
i=1
pi+λ

(
n∑
i=1
pi−1

)
(1.63)

The likelihood (1.63) is maximized by taking the first derivative and setting it to zero to obtain:
∂L(F )

∂pj
= ∏

i ̸=j
pi+λ set= 0, j = 1, . . . ,n (1.64)

These n equations along with the constraint Σipi = 1 can be solved straightforwardly to give:

p̂i =
1

n
, i= 1, . . . ,n (1.65)

That is, the nonparametric MLE of the distribution will be:

F̂ :mass
1

n
on ti, i= 1, . . . ,n (1.66)

where n is the size of the testing data set. In this case (1.2) will be reduced to:�R(η) =EF̂

[
L(Y,η(X)

]
(1.67)

= 1

n

n∑
i=1
L

(
yi,η(xi)

)
(1.68)

where the expectation has been taken over the empirical distribution F̂ of the variable. In the case of classification, (1.67) can
be reduced further to: �R(η) = 1

n

n∑
i=1
ci,η(xi) (1.69)

In the special case of zero loss for correct decisions in binary classification, (1.69) reduces further to:

�R(η) = 1

n

n∑
i=1

(
c12 Iĥ(xi|ω1)<th+c21 Iĥ(xi|ω2)>th

)
(1.70)

= 1

n
(c21 ê1n1 +c21 ê2n2) (1.71)

= c21 àFNF P̂1 +c21 �FPF P̂2 (1.72)
which is the nonparametric approximation to (1.56) and (1.60). The indicator function I is defined in (1.46). The values n1 and
n2 are the sizes of class-1 sample and class-2 samples respectively, and P̂1 and P̂2 are the estimated a priori probabilities. The
function ĥ(xi) is the estimated log-likelihood ratio at case ti obtained from estimating the posterior probabilities with any of the
nonparametric classificationmethods (Section 1.4). In the case of c12 = c21 = 1, the so-called “0-1 loss function”, the risk is called
simply the error rate or (Probability of Misclassification (PMC).

The two components, 1−àFNF and �FPF give one point on the empirical (estimated) ROC curve. To draw the complete
curve in the nonparametric situation, the estimated log-likelihood is calculated for each point of the available data set. Then
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all possible thresholds are considered in turn, i.e., the threshold values between every two successive estimated log-likelihood
values. At each threshold value a point on the ROC curve is calculated. Then the AUC can be calculated numerically from the
empirical ROC curve using the trapezoidal rule:

�AUC = 1

2

nth∑
i=2

(FNFi−FNFi−1) (TPFi+TPFi−1) (1.73)

where nth is the number of threshold values taken over the data set. By plotting the empirical ROC curve, it is easy to see that the
AUC obtained from the trapezoidal method is the same as the Mann-Whitney statistic—which is another form of the Wilcoxon
rank-sum test (H\’{a}jek, \v{S}id\’{a}k and Sen, 1999, Ch.4)—defined by:

�AUC = 1

n1n2

n2∑
j=1

n1∑
i=1
ψ

(
ĥ (xi|ω1) , ĥ

(
xj |ω2

))
, (1.74)

ψ(a,b) =


1 a> b
1/2 a= b

0 a< b
(1.75)

The equivalence of the area under the empirical ROC and the Mann-Whitney-Wilcoxon statistic is the basis of its use in the
assessment of diagnostic tests; see Hanley and McNeil (1982). Swets (1986) has recommended it as a natural summary measure
of detection accuracy on the basis of signal-detection theory. Applications of this measure are widespread in the literature on
human and computer-aided diagnosis in medical imaging, e.g., Jiang et al. (1999). In the field of machine learning, Bradley
(1997) has recommended it as the preferred summary measure of accuracy when a single number is desired. These references
also provide general background and access to the large literature on the subject.

It hasbeenmentionedabove that in thenonparametric situation thesemetrics are estimated froma single givendata set, i.e.,
the testing data set or, less formally, the testers. But as long as the distribution is unknown it is not only impossible to calculate
these metrics parametrically, but it is also impossible to generate, by simulation, testing data sets on which these metrics can be
estimated. In that case the classifiermight be trained and its performancemetric estimated from the same training data set. This
metric will be a random variable whose randomness comes from the finite training data set t. That is, under different data sets
even of the same size, the metric will vary. Therefore it is not sufficient to assess a classifier performance by estimating its mean,
either error or AUC, without estimating the variability of that metric. The central content of this dissertation is about assessing
the classifier performance in the mean and variance. Chapter 2 is and introduction to the different statistical methods available
in the literature for nonparametric methods of estimating mean and variance.
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CHAPTER 2

Nonparametric Estimation and Assessment:
Literature Review

2.1. Nonparametric methods for Bias and Variance Estimation

In Section 1.9 it has been explained that in the nonparametric situation, the classifier performance must be estimated from
a given data set, i.e., a data set available for testing. Now, the performance of the classifier is measured using a certain metric,
e.g., the error rate or, alternatively, the AUC. Either of these metrics is a statistic since it is function of a sample from a distribu-
tion. The most accessible measures of the behavior of either of these statistics are the mean and variance. The present chapter
introduces the main nonparametric methods for estimating the mean and variance of any statistic. Then the special case where
the statistic is the error rate of a classification rule is discussed and the state-of-the-art methods in the literature are explained
for that particular performance metric.

Assume that there is a statistic s that is a function of a data set x : {xi, i= 1,2, . . . ,n}, where xi
i.i.d.∼ F . The statistic s is now a

random variable and its variability comes from the variability of xi. Assume that this statistic is used to estimate a real-valued
parameter θ = f (F ). Then θ̂ = s (x) has expected value E [s (x)] and variance Var[s (x)]. The mean square error of the estimator θ̂
is defined as:

MSEθ̂ =E
[
θ̂−θ]2 (2.1)

The bias of the estimator θ̂ = s (x) is defined by the difference between the true value of the parameter and the expectation of the
estimator, i.e.,

biasF = biasF
(
θ̂,θ

)=EF [s (x)]−f (F ) (2.2)
Then the MSE in (2.1) can be rewritten as:

MSEθ̂ = bias2
F

(
θ̂
)+Var

[
θ̂
]

(2.3)
A critical question is whether the bias and variance of the statistic s in (2.3) may be estimated from the available data set and, if
so, how?

2.1.1. Bootstrap Estimate

The bootstrap was introduced by Efron (1979) to estimate the standard error of a statistic. The bootstrap mechanism is
implemented by treating the current data set x as a representation for the population distribution F ; i.e., approximating the
distribution F by the MLE defined in (1.66). ThenB bootstrap samples are drawn from that empirical distribution. Each boot-
strap replicate is of size n, the same size as x, and is obtained by sampling with replacement. Then in a bootstrap replicate some
case xi, in general, will appear more than once at the expense of another xj that will not appear. The original data set will be
treated now as the population, and the replicates will be treated as samples from the population. This situation is illustrated in
Figure 2.1. Therefore, the bootstrap estimate of bias is defined to be:

biasF̂ (θ̂) = θ̂∗(·)− θ̂, (2.4)

θ̂∗(·) = 1

B

B∑
b=1

θ̂∗b, (2.5)

θ̂∗b = s(x∗b), (2.6)

θ̂ = s(x) (2.7)

The bootstrap estimate of standard error of the statistic θ̂(x) is defined by:

ŜEB =
{

B∑
b=1

[
θ̂∗b− θ̂∗(·)

]2
/(B−1)

}1/2

(2.8)

Either in estimating the bias or the standard error, the larger the number of bootstraps the closer the estimate to the asymptotic
value. Said differently:

lim
B→∞

ŜEB(θ̂∗) =SEF̂ (θ̂∗) (2.9)
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Figure 2.1. Bootstrap mechanism: B bootstrap replicates are withdrawn from the original sample. From each replicate the
statistic is calculated.

For more details and some examples the reader is referred to Efron and Tibshirani (1993, Ch. 6, 7, and 10)

2.1.2. Jackknife Estimate

Instead of replicating from the original data set, a new set x(i) = (x1, . . . ,xi−1,xi+1, . . . ,xn) is created by removing the case xi
from the data set. Then the jackknife samples are defined by:

x(i) = (x1, . . . ,xi−1,xi+1, . . . ,xn), i= 1, . . . ,n (2.10)

and the n-jackknife replications of the statistic θ̂ are:

θ̂(i) = s(x(i)), i= 1, . . . ,n (2.11)
The jackknife estimates of bias and standard error are defined by:�biasjack = (n−1)(θ̂(·)− θ̂) (2.12)

ŜEjack =
[
n−1

n

n∑
i=1

(θ̂(i) − θ̂(·))2

]1/2

, (2.13)

θ̂(·) = 1

n

n∑
i=1
θ̂(i) (2.14)

For motivation behind the factors (n−1) and (n−1)/n in (2.12) see Efron and Tibshirani (1993, Ch. 11). The jackknife estimate
of variance is discussed in detail in Efron (1981) and Efron and Stein (1981).
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2.1.3. Bootstrap vs. Jackknife

Usually it requires up to 200 bootstraps to yield acceptable bootstrap estimates (in special situations like estimating the
uncertainty in classifier performance it may take up to thousands of bootstraps). Hence, this requires calculating the statistic θ̂
the same number of timesB. In the case of the jackknife, it requires only n calculations as shown in (2.11). If the sample size is
smaller than the required number of bootstraps, the jackknife is more economical in terms of computational cost.

In terms of accuracy, the jackknife can be seen to be an approximation to the bootstrap when estimating the standard error
of a statistic; see Efron andTibshirani (1993, Ch. 20). Thus, if the statistic is linear they almost give the same result (The bootstrap
gives the jackknife estimate multiplied by [(n−1)/n]1/2. A statistic s(x) is said to be linear if:

s(x) =µ+ 1

n

n∑
i=1
α(xi), (2.15)

where µ is a constant and α(·) is a function. This also can be viewed as having one data point at a time in the argument of the
function α. Similarly, the jackknife can be seen as an approximation to the bootstrap when estimating the bias. If the statistic is
quadratic, they almost agree except in a normalizing factor . A statistic s(x) is quadratic if:

s(x) =µ+ 1

n

∑
1≤i≤n

α(xi)+
1

n2

∑
1≤i<j≤n

β(xi,xj) (2.16)

An in-depth treatment of the bootstrap and jackknife and their relation to each other inmathematical detail is provided by Efron
(1982, Ch. 1-5).

If the statistic is not smooth the jackknife will fail. Informally speaking, a statistic is said to be smooth if a small change in the
data leads to a small change in the statistic. An example of a non-smooth statistic is the median. If the sample cases are ranked
and the median is calculated, it will not change when a sample case changes unless this sample case bypasses the median value.
An example of a smooth statistic is the sample mean.

2.1.4. Influence Function, Infinitesimal Jackknife, and Estimate of Variance

The infinitesimal jackknife was introduced by Jaeckel (1972). The concept of the influence curve was introduced later by
Hampel (1974). In the present context and for pedagogical purposes, the influence curve will be explained before the infinitesi-
mal jackknife, since the former can be understood as the basis for the latter.

Following Hampel (1974), let R be the real line and s be a real-valued functional defined on the distribution F which is
defined on R. The distribution F can be perturbed by adding some probability measure (mass) on a point x. This should be
balanced by a decrement in F elsewhere, resulting in a new probability distributionGε,x defined by:

Gε,x = (1−ε)F +εδx, x ∈R (2.17)
Then, the influence curve ICs,F (·) is defined by:

ICs,F (x) = lim
ε→0+

s ((1−ε)F +εδx)−s (F )

ε
(2.18)

It should be noted that F does not have to be a discrete distribution. A simple example of applying the influence curve concept
is to consider the expectation s= ∫

x dF (x) =µ. Substituting back in (2.18) gives:
ICs,F (x) =x−µ (2.19)

The meaning of this formula is the following: the rate of change of the functional s with the probability measure at a point x is
x−µ. This is how the point x influences the function s.

The influence curve can be used to linearly approximate a functional s; this is similar to taking up to only the first-order
term in a Taylor series expansion. Assume that there is a distributionG near to the distribution F ; then under some regularity
conditions (see, e.g., Huber, 1996, Ch. 2) a functional s can be approximated as:

s(G) ≈ s(F )+
∫
ICs,F (x) dG(x) (2.20)

The residual error can be neglected since it is of a small order in probability. Some properties of (2.20) are:∫
ICT,F (x) dF (x) = 0 (2.21)

and the asymptotic variance of s(F ) under F , following from (2.21), is given by:

VarF [s(F )] ≃
∫ {

ICT,F (x)
}2
dF (x) (2.22)

which can be considered as an approximation to the variance under a distributionG near toF . Now, assume that the functional
s is a functional statistic in the data set x = {xi : xi ∼ F,i = 1,2, · · ·,n}. In that case the influence curve (2.18) is defined for each
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Figure 2.2. The new probability masses for the data set X under a perturbation at sample case xi obtained by letting the new
probability at xi exceed the new probability at any other case xi by ε

sample case xi, under the true distribution F as:

Ui(s,F ) = lim
ε→0

s(Fε,i)−s(F )

ε
= ∂s(Fε,i)

∂ε

∣∣∣∣
ε=0

, (2.23)

where Fε,i is the distribution under the perturbation at observation xi. In the sequel (2.23) will be called the influence function.
If the distribution F is not known, the MLE F̂ of the distribution F is given by (1.66), and as an approximation F̂ may substitute
for F in (2.23); the result may then be called the empirical influence function, Mallows (1974), or infinitesimal jackknife Jaeckel
(1972). In such an approximation, the perturbation defined in (2.17) can be rewritten as:

F̂ε,i = (1−ε)F̂ +εδxi , xi ∈ x, i= 1, . . . ,n (2.24)
This kind of perturbation is illustrated in Figure 2.2. It will often be useful to write the probability mass function of (2.24) as:

f̂ε,i(xj) =
{ 1−ε

n +ε j = i
1−ε
n j ̸= i (2.25)

Substituting F̂ forG in (2.20) and combining the result with (2.23) gives the influence-function approximation for any functional
statistic under the empirical distribution F̂ . The result is:

s(F̂ ) = s(F )+ 1

n

n∑
i=1
Ui(s,F )+Op(n−1) (2.26)

≈ s(F )+ 1

n

n∑
i=1
Ui(s,F ) (2.27)

The term Op(n−1) reads “big-O of order 1/n in probability”. In general, Un = Op(dn) if Un/dn is bounded in probability, i.e.,
Pr{|Un|/dn < kε} > 1− ε ∀ ε > 0. This concept can be found in Barndorff-Nielsen and Cox (1989, Ch. 2). Then the asymptotic
variance expressed in (2.22) can be given for s(F ) by:

VarF [s] = 1

n
EF

[
U2(xi,F )

]
(2.28)

which can be approximated under the empirical distribution F̂ by:

V̂arF̂ [s] = 1

n2

n∑
i=1
U2
i (xi, F̂ ) (2.29)

It is important to state here that s should be a functional in F̂ that is an approximation to F , as was initially assumed in (2.18). If
for example the value of the statistic s changes if every sample case xi is duplicated, i.e., repeated twice, this is not a functional
statistic. An example of a functional statistic is the biased version of the variance estimate Σi(xi − x̄i)2/n, while the unbiased
versionΣi(xi−x̄i)2/(n−1) is not a functional statistic. Generally, anyapproximation s(F̂ ) to the functional s(F ), by approximating
F by the MLE F̂ , obviously will be functional. In such a case the statistic s(F̂ ) is called the plug-in estimate of the functional
s(F ). Moreover, the influence function method for variance estimation is applicable only to those functional statistics whose
derivative (2.23) exists. If that derivative exists, the statistic is called a smooth statistic; i.e., a small change in the data set leads
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a small change in the statistic. For instance, the median is a functional statistic in the sense that duplicating any sample case
will result in the same value of the median. On the other hand it is not smooth as described at the end of Section 2.1.3. A key
reference for the influence function is Hampel (1986).

Equation (2.29) gives thenonparametric estimateof variance for a statistic sunder theempirical distribution F̂ ; this equation
will be the basis of subsequent work in this dissertation. A very interesting case arises from (2.25) if −1/(n+1) is substituted for
ε. In this case the new probability mass assigned to the point xj=i in (2.25) will be zero. This value of ε simply generates the
jackknife estimate discussed in Section 2.1.2 where the whole point is removed from the data set.

2.2. Estimating theMean Performance of a Classification Rule

In the previous section the statistic, or generally speaking the functional, was a function of just one data set. For a non-fixed
design, i.e., the predictors for the testing set do not have to be the same as the predictors of the training set, a slight clarifica-
tion for the previous notations is needed. The classification rule trained on the training data set t will be denoted as ηt. Any
new observation that does not belong to t will be denoted by t0 = (xo,yo). Therefore the loss due to classification is given by
L(y0,ηt(x0)). Any metric conditional on that training data set will be similarly subscripted. Thus, the risk (1.56), the error rate
whose two components are (1.60), and the area under the curve (1.61) should be denoted by Rt, Errt, and AUCt, respectively.
In the rest of the present chapter, for simplicity and without loss in generality, the 0-1 loss function will be used. In such a case
the conditional error rate will be given by:

Errt =E0F
[
L

(
y0,ηt (x0)

)]
,
(
x0,y0

)∼F (2.30)

The expectationE0F is subscripted so to emphasize that it is taken over the observations t0 ∉ t. If the performance is measured
in the error rate and we are interested in the mean performance, not the conditional one, then it is given by:

Err =Et [Errt] (2.31)
whereEt is the expectation over the training set t, which would be the same if we had writtenEF ; for notation clarity the former
is chosen.

This section now picks up where Section 1.9 ended and assumes the existence of a classification rule already trained on a
training data set, ηt. A natural next question is, given that there is just a single data set available, how to use this data set in
assessing the classifier performance as well? Said differently, how should one estimate, using only the available data set, the
classification performance of a classification rule in predicting new observations; these observations are different from those
on which the rule was trained. In this section the principal methods in the literature for estimating the mean and variance of
the performance of a classification rule are introduced. The performance metric here will be the error rate. Different estimators
are proposed in the literature. Later, in Chapter 3, estimating the classification performance using the AUC as a metric will be
explained in detail, since it is the contribution of this dissertation.

2.2.1. Apparent Error

The apparent error, or residual error in regression, is the error of the fittedmodel when it is tested on the same training data.
Of course it is downward biased with respect to the true error rate since it results from testing on the same information used in
training (Efron, 1986). The apparent error is defined by:

Errt =EF̂L(y,ηt(x)), (x,y) ∈ t (2.32)

= 1

n

n∑
i=1

(
Iĥt(xi|ω1)<th+Iĥt(xi|ω2)>th

)
(2.33)

Over-designing a classifier to minimize the apparent error is not the goal. The goal is to minimize the true error rate (2.30).

2.2.2. Variance-Bias Trade-off

Over-training, over-designing, or overfitting are all synonyms. The more trained the classifier, conditional on the same data
set size, the more complex it is. This can be better understood in terms of the smoothing techniques discussed in Section 1.4.1.
The smaller thewindow size of the smoother, themore complex it will be. An extreme example of an over-trained classifier is the
1-nearest neighbor classifier. In this case, the window size tends to zero. Hastie and Tibshirani (1990, Ch. 3) review a measure
of the complexity of smoothing functions in terms of an effective number of degrees of freedom. This overfitting decreases the
apparent error; but what is its effect on the true error rate?

There is always a trade-off between the bias and variance of the measure of performance of the classification rule. Over-
training a particular classifier decreases its bias and increases its variance; and vice versa. This can be best understood if the
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set size to the same value.

k-NN smoother is considered (Section 1.4.1.1). At point xi the prediction is Σj∈NK (xi)yj/k. The expectation of this regression
function is Σj∈NK (xi)E

[
yj

]
/k, while the variance will be σ2/k, where the response is assumed to have constant variance σ2 with

the predictor. If the window size of this rule is squeezed to produce a more complex rule, i.e., k is decreased, the variance will
increase. But the bias will decrease since Σj∈NK (xi)E

[
yj

]
/k tends to approach E

[
yi

]
. On the contrary, increasing k obviously

decreases the variance, while incorporating many data points whose expectations will be very likely to vary from E
[
yi

]
, hence

the bias increases. The relationship between the model complexity and the error rate is illustrated in Figure 2.3. Hughes (1968)
first carried out the required computations displayed in that figure.

2.2.3. Cross Validation

The basic concept of cross validation (CV) has been proposed in different articles since the mid-1930s. The concept simply
leans on splitting the data into two parts; the first part is used in design without any involvement of the second part. Then the
secondpart is used to test the designed procedure; this is to test how the designed procedurewill behave for newdata sets. Stone
(1974) is a key reference for CV that proposes different criteria for optimization.

Cross-validation can be used to assess the prediction error of a model or in model selection. In this section the former is
discussed, since assessing classifiers is the interest of this work rather than designing classifiers. The true error rate in (2.30) is
the expected error rate for a classification rule if tested on the population, conditional on a particular training data set t. This
metric can be approximated by leave-one-out cross-validation by:

�Errcv1
t = 1

n

n∑
i=1
L

(
yi,ηt(i) (xi)

)
, (xi,yi) ∈ t (2.34)

This is done by training the classification rule on the data set t(i) that does not include the case ti; then testing the trained rule on
that omitted case. This proceeds in “round-robin” fashion until all cases have contributed one at a time to the error rate. There
is a hidden assumption in this mechanism: the training set t will not change very much by omitting a single case. Therefore,
testing on the omitted points one at a time accounts for testing approximately the same trained rule on n new cases, all different
fromeachother anddifferent from those the classifier has been trainedon. Besides this leave-one-out cross-validation, there are
other versions named k-fold (or leave-n/k-out). In such versions the whole data set is split into k roughly equal-sized subsets,
each of which contains approximately n/k observations. The classifier is trained on k−1 subsets and tested on the left-out one;
hence we have k iterations.

It is of interest to assess this estimator to see if it estimates the conditional true error with small mean square error (MSE)
E

[�Errcv1
t −Errt

]2
. Many simulation results, e.g., Efron (1983), show that there is only a very weak correlation between the cross

validation estimator and the conditional true error rate �Errt. This issue is discussed in mathematical detail in the excellent
paper by Zhang (1995). Other estimators to be discussed below are shown to have this same attribute. This very interesting (and
perhaps surprising) result will be revisited in more detail in Chapter 3.

20



2.2.4. BootstrapMethods for Estimation of Error Rate

The prediction error in (2.30) is a function of the training data set t and the testing population F . Bootstrap estimation
can be implemented here by treating the empirical distribution F̂ as an approximation to the actual population distribution F ;
by replicating from that distribution one can simulate the case of many training data sets tb, b = 1, . . . ,B, the total number of
bootstraps. For every replicated training data set the classifier will be trained and then tested on the original data set t. This is
the simple bootstrap estimator approach (Efron and Tibshirani, 1993, Sec. 17.6) defined by:

�ErrSB
t =E∗

n∑
i=1
L(yi,ηt∗ (xi))/n, F̂ → t∗ (2.35)

It should be noted that this estimator no longer estimates the true error rate (2.30) because the expectation taken over the boot-
straps mimics an expectation taken over the population of trainers, i.e., it is not conditional on a particular training set. Rather,
the estimator (2.35) estimates the expected performance of the classifier EFErrt, which is a constant metric, not a random
variable any more. For a finite number of bootstraps the expectation (2.35) can be approximated by:

�ErrSB
t = 1

B

B∑
b=1

n∑
i=1
L

(
yi,ηt∗b (xi)

)
/n (2.36)

2.2.4.1. Leave-One-Out Bootstrap

The last estimator is obviously biased since the original data set t used for testing includes part of the training data in every
bootstrap replicate. Efron (1983) proposed that, after training the classifier on every bootstrap replicate, it is tested on those
cases in the set t that are not included in the training; this concept can be developed as follows. Equation (2.36) can be rewritten
by interchanging the order of the double summation to give:

�ErrSB
t = 1

n

n∑
i=1

B∑
b=1

L
(
yi,ηt∗b (xi)

)
/B (2.37)

This equation is formally identical to (2.36) but it expresses a different mechanism for evaluating the same quantity. It says that,
for a given point, the average performance over the bootstrap replicates is calculated; then this performance is averaged over all
the n cases. Now, if every case ti is tested only from those bootstraps that did not include it in the training, a slight modification
of the previous expression yields the leave-one-out bootstrap estimator:

�Err(1)
t = 1

n

n∑
i=1

[
B∑
b=1

IbiL
(
yi,ηt∗b (xi)

)
/

B∑
b′=1

Ib
′

i

]
(2.38)

where the indicator function Ibi equals one when the case ti is not included in the training replicate b, and zero otherwise. To
simplify notation, the error L(yi,ηt∗b (xi)) may be denoted by Lb

i . Efron and Tibshirani (1997) emphasized a critical point about
the difference between this bootstrap estimator and leave-one-out cross validation. Cross-validation tests on a given sample
case ti, having been trained just once on the remaining data set. By contrast, the leave-one-out bootstrap tests on a given sample
case ti using a large number of classifiers that result from a large number of bootstrap replicates that do not contain that sample.
This results in a smoothed cross-validation-like estimator. To see how the conventional cross-validation estimator is unsmooth,
consider the decision surface in the feature subspace that results from training the classifier on the data set that remains after
leaving out the case ti. Whenever the predictor xi changes, the loss function will not change unless the predictor passes across
the decision surface. Training on many data sets results in many decision surfaces and then whenever the predictor xi changes
it will tend to cross some of the surfaces, yielding a smoother estimator, rather than the discontinuous one that results from
cross-validation.

2.2.4.2. The Refined Bootstrap

The simple bootstrap and the leave-one-out bootstrap can be shown to estimate the mean true error rate for a classifier.
This mean is with respect to the population of all training data sets. For estimating the true error rate of a classifier, conditional
on a particular training data set, Efron (1983) proposed to correct for the downward biased estimatorErrt. Since the true error
rateErrt can be written asErrt+(Errt−Errt), then it can be approximated byErrt+EF (Errt−Errt). The termErrt−Errt is
called the optimism. The expectation of the optimism can be approximated over the bootstrap population. Finally the refined
bootstrap approach, as named in Efron and Tibshirani (1993, Sec. 17.6), gives the estimator:�ErrRF

t =Errt +E∗(Errt∗(F̂ )−Errt∗) (2.39)

where Errt∗(F̂ ) represents the error rate obtained from training the classifier on the bootstrap replicate t∗ and testing on the
empirical distribution F̂ . This can be approximated for a limited number of bootstraps by:

�ErrRF
t =Errt + 1

B

B∑
b=1

{
n∑
i=1
L

(
yi,ηt∗b (xi)

)
/n−

n∑
i=1
L

(
y∗ib,ηt∗b (x∗ib)

)
/n

}
(2.40)
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2.2.4.3. The 0.632 Bootstrap

If the conceptused indeveloping the leave-one-outbootstrapestimator, i.e., testingoncasesnot included in training, is used
again in estimating the optimism described above, this gives the 0.632 bootstrap estimator. Since the probability of including a
case ti in the bootstrap t∗b is given by:

Pr(ti ∈ t∗b) = 1− (1−1/n)n (2.41)

≈ 1−e−1 = 0.632 (2.42)
the effective number of sample cases contributing to a bootstrap replicate is approximately 0.632 of the size of the training
data set. Efron (1983) introduced the concept of a distance between a point and a sample set in terms of a probability. Having
trained on a bootstrap replicate, testing on those cases in the original data set not included in the bootstrap replicate accounts
for testing on a set far from the training one, i.e., the bootstrap replicate. This is because every sample case in the testing set has
zero probability of belonging to the training set, i.e., very distant from the training set. This is a reason for why the leave-one-out
is upward biased estimator. Efron (1983) showed roughly that :

EF

{
Errt −Errt

}
≈ 0.632EF

{�Err(1)
t −Errt

}
(2.43)

Substituting back in (2.39) gives the 0.632 estimator:�Err(.632)
t = .368Errt + .632�Err(1)

t (2.44)
The proof of the above results can be found in Efron (1983) and Efron and Tibshirani (1993, Sec. 6).

Themotivation behind this estimator as stated earlier is to correct for the downward biased apparent error by adding a piece
of the upward biased leave-one-out-bootstrap estimator. But an increase in variance should be expected as a result of adding
this piece of the relatively variable apparent error. Moreover, this new estimator is no longer smooth since the apparent error
itself is unsmooth.

2.2.4.4. The 0.632+ Bootstrap Estimator

The .632 estimator reduces the bias of the apparent error. But for over-trained classifiers, i.e., those whose apparent error
tends to be zero, the .632 estimator is still downward biased. Breiman et al. (1984) provided the example of an over-fitted rule,
like 1-nearest neighbor where the apparent error is zero. If, however, the class labels are assigned randomly to the predictors
the true error rate will obviously be 0.5. But substituting in (2.44) gives the .632 estimate of .632× .5 = .316. To account for this
bias for such over-fitted classifiers, Efron and Tibshirani (1997) defined the no-information error rate γ by:

γ =EoFind

[
L

(
y0,ηt(x0)

)]
(2.45)

where Find means that x0 and y0 are distributed marginally as F but they are independent. Or said differently, the label is
assigned randomly to the predictor. Then for a training sample t γ can be estimated by:

γ̂ =
n∑
i=1

n∑
j=1

L
(
yi,ηt(xj)

)
/n2 (2.46)

This means that the n predictors have been permuted with the n responses to produce n2 non-informative cases. In the spe-
cial case of binary classification, let p̂1 be the proportion of the response classified as belonging to class 1. Also, let q̂1 be the
proportion of the responses classified as belonging to class 1. Then (2.46) reduces to:

γ̂ = p̂1(1− q̂1)+ (1− p̂1)q̂1 (2.47)
Also define the relative overfitting rate:

R̂=
�Err(1)

t −�Errt

γ̂−�Errt
(2.48)

Efron and Tibshirani (1997) showed that the bias of the .632 estimator for the case of over-fitted classifiers is alleviated by using
a renormalized version of that estimator: �Err(.632+)

t = (1− ŵ)Errt + ŵ�Err(1)
t , (2.49)

ŵ= .632

1− .368R̂
(2.50)

It is useful to express the .632+ estimator in terms of its predecessor, the .632 estimator. Combining (2.44), (2.47), and (2.48) then
substituting in (2.49) yields: �Err(.632+)

t =�Err(.632)
t + (�Err(1)

t −Errt)
.368 · .632 · R̂

1− .368R̂
(2.51)
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Efron and Tibshirani (1997) consider the possibility that R̂ lies out of the region
[
0,1

]
. This leads to their proposal of defining:�Err(1)′

t = min(�Err(1)
t , γ̂), (2.52)

R̂′ =
{

(�Err(1)
t −Errt)/(γ̂−Errt) Errt <�Err(1)

t < γ
0 otherwise

(2.53)

to obtain a modification to (2.51) that becomes:

�Err(.632+)
t =�Err(.632)

t + (�Err(1)′
t −Errt)

.368 · .632 · R̂′

1− .368R̂′ (2.54)

2.3. Estimating the Standard Error of�Err(1)
t

What have been discussed above are different methods to estimate the error rate of a trained classification rule, e.g., cross
validation, .632, .632+, conditional on that training set; alternatively, to estimate the mean error rate, as an expectation over
the population of training data sets, like the leave-one-out bootstrap estimator. Regardless of what the estimator is designed to
estimate, it is still a function of the current data set t, i.e., it is a random variable. If �Err(1)

t is considered, it estimates a constant
real-valued parameterE0FEFL(y0,ηt(x0)) with expectation taken over all the trainers and then over all the testers, respectively;
this is theoverallmeanerror rate. Yet, �Err(1)

t is a randomvariablewhose variability comes from the finite size of the available data
set. If the classifier is trained and tested on a very large number of observations, this would approximate training and testing on
the entire population, and the variability would shrink to zero. This also applies for anymetric other than the error rate. Chapter
3 introduces new work in which the AUC is used as the summary metric of performance, where all the concepts and different
estimators mentioned in the present chapter are applied.

Efron and Tibshirani (1997) proposed using the influence function method, see Section 2.1.4, to estimate the uncertainty
(variability) in �Err(1)

t . The reader is alerted that estimators that incorporate a piece of the apparent error are not suitable for
the influence function method. Such estimators are not smooth because the apparent error is not smooth. By recalling the
definitions of Section 2.1.4, �Err(1)

t is now the statistic s(F̂ ). Define Nb
i to be the number of times the case ti is included in the

bootstrap b. Also, define the following notation:

lb· =
1

n

n∑
i=1
IbiL

b
i , (2.55)

It has been proven in Efron and Tibshirani (1995) that the influence function of such an estimator is given by:

∂s(F̂ε,i)

∂ε

∣∣∣∣∣
ε=0

= (2+ 1

n−1
)(Êi−�Err(1)

t )+
n

∑B
b=1 (Nb

i − N̄i)I
b
i∑B

b=1 I
b
i

(2.56)

Combining (2.29) and (2.56) give an estimation to the uncertainty in �Err(1)
t . A very similar, but complete, proof will be given in

Chapter 3 when estimating the uncertainty in the AUC. Critical comments and details are deferred to that chapter.

2.4. Comparative Study for Proposed Estimators

Efron (1983); Efron and Tibshirani (1997) provide comparisons of some performance measure for the proposed estimators.
The latter reference shows an example of how a single estimate of the influence function agreed well with the uncertainty of
the �Err(1)

t estimator obtained from Monte-Carlo (MC) simulation. In the same reference the authors ran many simulations
considering a variety of classifiers and data distributions, as well as real data sets. The �Err(.632+)

t estimator is the least biased
among them all, achieving its design goal. But it is also necessary to consider theRMS error, defined by Efron as:

RMS =EMC

{�Errt −Errt

}2
(2.57)

= 1

G

G∑
g=1

{�Errtg −Errtg

}2
(2.58)

where �Errtg is the estimator (any estimator) conditional on a training data set tg . Errtg is the true prediction error conditional
on the same training data set. The number of MC trials,G, in his experiments was 200. The following statement is quoted from
Efron and Tibshirani (1997): “The results vary considerably from experiment to experiment, but in terms of RMS error the .632+
rule is an overall winner.” An extension to this study is done in this dissertation by considering the AUC as the summary metric,
and a comment on the above statement will be given in Chapter 3.
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CHAPTER 3

Introduction to theWork Done In This Dissertation:
Nonparametric Approach of Classifier Assessment in Terms of ROC Curve

3.1. Introduction

The purpose of the present chapter is to introduce the work done in this dissertation, the nonparametric assessment in
terms of the ROC curve. The new summary metric to be considered in the present chapter, and beyond, is the AUC (see Section
1.9). Before delving into our objective in this dissertation, i.e., the assessment task, it may be instructive to examine, analytically,
what the log-likelihood ratio looks under the popular data population, the multinormal distribution. Consider two different
classes, ω1andω2, whose p-dimensional feature vectors have the multinormal distributionsF1 andF2 respectively, described by
the PDFs:

fX (x|ωi) =
1

(2π)p/2 |Σi|1/2
exp

[
−1

2
(x−µi)′Σ−1

i (x−µi)
]
, i= 1,2 (3.1)

The Bayes classifier is the optimal one; it has the minimum risk (see Section 1.2). The training for the Bayes classifier in the
multinormal case requires only the estimation of the mean vectors µi’s and the covariance matrices Σi’s. Assume that the train-
ing set for ω1 is t1 = {ti : ti = (xi,ω1)}, i= 1, . . . ,n1, and the training set for ω2 is t2 = {ti : ti = (xi,ω2)}, i= 1, . . . ,n2. The estimates of
the population parameters are given by:

Σ̂i =
1

ni−1

[
ni∑
j=1

(xj − µ̂i)(xj − µ̂i)′
]
, (3.2)

µ̂i =
1

ni

ni∑
j=1

xj , where xj ∈ωi (3.3)

Anderson (2003). The log-likelihood function (1.57), in combinationwith the estimated parameters (3.2), assuming equal preva-
lence, for the two classes, and equal costs for the two kinds of errors, can be written as:

h(X) =−1

2

[
(X − µ̂1)′Σ̂−1

1 (X − µ̂1)− (X − µ̂2)′Σ̂−1
2 (X − µ̂2)

]− 1

2
ln

∣∣Σ̂1
∣∣∣∣Σ̂2
∣∣ (3.4)

It should be noted that if the a priori probabilities and costs, which form a particular threshold value of the testing environment,
are known they should be included in the log-likelihood ratio, i.e., the log of the R.H.S. of inequality (1.17) should be added to the
R.H.S. of (3.4). In that case, the classifier is designed to be used in this environment having that threshold. For demonstration,
consider the population parameters to take the following values:

µ1 =
(
2
2

)
, Σ1 =

(
1 .2
.2 1

)
, (3.5)

µ2 =
(
1
1

)
, Σ2 =

(
.3 .1
.1 .3

)
(3.6)

Consider that we train on a very large size of observations such that the estimated parameters are almost the same as the true
ones. Under these parameters the two PDFs (3.1) of the two classes are shown in Figure 3.1. Two simulated data sets, one set
for each class with 10,000 observations per class, are simulated from binormal distributions with the above parameters and
illustrated in Figure 3.2. Under these parameter values, the log-likelihood ratio in (3.4) is plotted in Figure 3.3, while its contour
plot is given in Figure 3.4. The locus separating the two classes in Figure 3.2 is obtained by solving h(X) = 0 in (3.4).

The log-likelihood ratio h(X) in (3.4) is a function of the random vectorX = (x1,x2)′. Consider the transformation T :X −→
(h,d), where d is a dummy variable and set

d=x1 (3.7)
The dummy variable here is introduced just for clarity and we could have written T : X −→ (h,x1). We shall, no longer, refer
to d; rather, we refer to its genuine x1. This transformation is 1 : 2, this produces two values of the new vector (h,x1) at every
value of the vector X . In other words, solving (3.4) and (3.7) for x1 and x2 gives two solutions. By adding these two solutions,
and calculating the Jacobian of the transformation it can be shown that the joint PDF of h(X) and x1, under the assumption that
X ∼F1, is given by:
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Figure 3.1. A 3-D illustration of Probability Density Function (PDF) of two binormal distributions
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Figure 3.2. Two simulated data sets from two binormal distributions. The number of observations per class is 10,000.

f (h,x1|ω1) = exp[−.385h− .074x2
1 +1.805x1 −1.243

p
r]×

.00157p|r1|
(exp[.178x1

p
r]+exp[2.49

p
r− .178x1

p
r]) (3.8)

and, under the assumption thatX ∼F2, is given by:

f (h,x1|ω2) = exp[−1.385h− .074x2
1 +1.805x1 −1.243

p
r]×

.00157p|r1|
(exp[.178x1

p
r]+exp[2.49

p
r− .178x1

p
r]), (3.9)

where
r1 = 1.91+ .866h+x1 −x2

1 (3.10)
The conditional joint density functions (3.8) and (3.9) are defined only on a parabolic area determined in the h−x1 space by

the parabola r1 in (3.10). In general, under different values of the mean vectors and covariance matrices (3.5) this area is a conic
section.
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Figure 3.3. A 3-D representation of the log-likelihood ratio function of two features x1 and x2.
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Figure 3.4. Contour plot for the log-likelihood ratio function of two features x1 and x2.

Unfortunately, a closed form integration for (3.8) and (3.9) over x1, to obtain the marginal probabilities f (h|ω1) and f (h|ω2),
is not available. However, we always can obtain a numerical solution to the problem by carrying out the integration over x1

for every desired value of h. The marginal PDFs of h, conditional on ω1 and ω2, are obtained by the described technique and
illustrated in Figures 3.5 and 3.6. In addition, these two figures show the histograms of h obtained from simulating testing
observations from the distributions F1 and F2 and obtaining the log-likelihood ratio h for every observation. The figures show
how well both, the histogram and the mathematical solution, are highly consistent. Figure 3.7 shows the two PDFs, together, for
the classification purpose.

It is extremely important to comment on the result illustrated in Figure 3.7. Although the data are coming frombinormal dis-
tributions the log-likelihood ratio is not distributed as normal distribution. Moreover, fh|ω2

, in no way, can be approximated to
a normal distribution. It has an abrupt behavior that makes it resemble more the exponential distribution. This simple example
provides an important caveat to the exaggerated use of normality for the log-likelihood ratio.

For completeness, the following should be mentioned. One could have simultaneously diagonalized the matrices Σ1 and
Σ2—said differently, transform x1 and x2 to x′1 and x′2 such that the new variables have diagonalized covariance matrices—to
get rid of the cross terms in the new space of h−x′1. For the topic of simultaneous diagonalization the reader may be referred
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Figure 3.5. The PDF of the log-likelihood ratio underω1 obtained from mathematical analysis, along with its histogram obtained
from a simulation study.
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Figure 3.6. The PDF of the log-likelihood ratio underω2 obtained from mathematical analysis, along with its histogram obtained
from a simulation study.
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Figure 3.7. The two PDFs of the log-likelihood ratio and ω1 and ω2.

to Fukunaga (1990) or for more rigorous analysis to Schott (2005) or Searle (1982). After performing the simultaneous diago-
nalization to the matrices Σ1 and Σ2 and proceeding as described above, the joint density function of h and x′1 can be shown to
be

fH,X ′
1
(h,x′1|ω1) = .00232exp[−.33h− .166x′21 +2.15x′1]p|r2|

(3.11)

fH,X ′
1
(h,x′1|ω2) = .00232exp[−1.33h− .166x′21 +2.15x′1]p|r2|

, (3.12)

where
r2 = 2.08+h+1.29x′1 −x′21 , (3.13)
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Figure 3.8. A 3-D representation of the log-likelihood ratio function of x1 and x2 after simultaneous diagonalization for the two
covariance matrices Σ1 and Σ2.
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Figure 3.9. A contour plot of the log-likelihood ratio function of x1 and x2 after simultaneous diagonalization for the two covari-
ance matrices Σ1 and Σ2.

where r2 is the region on which the joint density of h−x′1 is defined. The log-likelihood ratio (3.4), after simultaneous diagonal-
ization, is illustrated in 3-D, as well as, contour plot in Figures 3.8 and 3.9.

The virtue of simultaneous diagonalization is obvious from Equations 3.11, 3.12, and 3.13.

It deserves mentioning that under the special case of normal distribution for the log-likelihood ratio ht (·), which is not the
case above, the ROC curve can be expressed, using the inverse error function transformation, as:

ϕ−1(TPF ) = (µ1 −µ2)

σ1
+ (
σ2

σ1
)ϕ−1(FPF ) (3.14)

This means that the whole ROC curve can be summarized in just two parameters: the intercept a, and the slope b; this is shown
in Figure 3.10. We frequently see the Central Limit Theorem at work in higher dimensions driving the ROC curve toward this
condition.
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Figure 3.10. The double-normal-deviate plot for the ROC under the normal assumption for the log-likelihood ratio is a straight line.

3.2. Comparison of Nonparametric Methods for Assessing Classifier Performance in Terms of ROC Parameters

For a particular classification rule, ηt, trained on the training data set t, the true value of the AUC for that rule is given by
(1.61). For notational clarity, this may be rewritten as:

AUCt =
∫ 1

0
TPFt d(FPFt) (3.15)

We can redefine the true AUC (3.15) as the expected value, over the population of testers, of the Mann-Whitney statistics, intro-
duced in (1.74). That is,

AUCt =EF1EF2

[
ψ

(
ĥt (x|ω1) ,ĥt (x|ω2)

)]
, (3.16)

ψ(a,b) =


1 a> b
1/2 a= b

0 a< b
(3.17)

where F1 and F2 represent the population of class 1 and class 2 respectively. Even if the two distributions are identical, except
in parameter values, they are distinguished here by two different subscripts to indicate that the expectation is carried over two
different testing data sets, one for each class. In the nonparametric situation, the expectation (3.16) can be approximated nu-
merically by expectation over the empirical distribution F̂1 and F̂2; this is given by (1.74). If the distributions of the log-likelihood
ratio ĥt are continuous then the condition a= b, in the equation above, occurs with probability zero. and we can write:

ψ(a,b) =
{

1 a> b
0 a< b (3.18)

The definition (3.16) is nothing but the probability that a random variable with distribution F2 is larger than a random
variable with distribution F1. The equivalence of (3.15) and (3.16) will be derived in Chapter 5.

3.2.1. Mean of Classifier Performance vs. Training Set Size

Sinceany classifier is designedusing a finite-sizedata set, its trueperformance—theperformanceobtained fromexpectation
over the population—is dominated by the size of this set—assuming fixing the distribution of the data. When the classifier is
re-designed using different training set size, the expected performance will vary. This is because the limited size training set has
some, not all, of the information represented in the population. In addition, if it is re-designed, using another data set having the
same size, the performance will vary as well. This is because the performance metric is a function of the training data set; hence
it is a random variable. An illustration of this can be provided by the following simulation study. If we consider the case, e.g.,
when the distribution is given by (3.1), where the dimensionality p= 11, Σ1 = Σ2 = I, the identity matrix, µ1 = 0, the zero vector,
and µ2 = 0.27×1, where 1 is the vector all of whose components are ones then Figure 3.11 shows the variability in the AUC vs.
the inverse of the training set size.

To exhibit the basic structure of the problemunder the practical limitation of a finite-training set, we carried out simulations
inspired by Chan et al. (1999) and the work of Fukunaga and Hayes (1989a,b). In our simulation, we assume that the feature
vector has the multinormal distribution with the following parameters: µ1 = 0,µ2 = c1, and Σ1 = Σ2 = I where 0 is the vector all
of whose components are zeros, 1 is the vector all of whose components are ones, I is the identity matrix, and c is a constant. A
fundamental metric is the Mahalanobis distance between the mean vectors of the two classes: it is defined as:

∆= [
(µ1 −µ2)′Σ−1(µ1 −µ2)

]1/2 (3.19)
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Figure 3.11. Uncertainty (variance) around the mean performance of the Bayes classifier, for 11 features, vs. the size of the
training data set. Asymptotically, the variability vanishes.
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Figure 3.12. Mean AUC of the Bayes classifier. For every training sample size n, the classifier is tested on pseudo-infinite testers
(represented as “ts”) and tested as well on the same training sample ( represented as “tr”). Each curve shows the average perfor-
mance over 100 MC trials. The numbers in the legend are the dimensionalities of the feature vectors.

It expresses how these two vectors are separated from each other with respect to the spread Σ. In the simulation of the present
example, the Mahalanobis distance is c2p. In this simulation, illustrated in Figure 3.12, the value c is adjusted for every dimen-
sionality to obtain the same asymptotic AUC. This allows us to isolate the effect of the variation in training set sizes. Typically,
the simulations described in this context used a value of 0.8 for ∆. For the time being, it is assumed that n1 = n2 = n, which is
referred to as the training set size per class. For a particular dimensionality, and for particular data set size n, two training data
sets are generated using the above parameters and distributions. When the classifier is trained, it will be tested on a pseudo-
infinite test set, here 1000 cases per class, to obtain a very good approximation to the true AUC for the classifier trained on this
very training data set; this is called a single realization or a Monte-Carlo (MC) trial.

Many realizations of the training data sets with same n are generated over MC simulation to study the mean and variance
of the AUC for the Bayes classifier under this training set size. The number of MC trials used is 100.
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Several important observations can be made from these results. As was expected, for training size n the mean apparent
AUC, i.e., coming from testing on the same training data set, is upwardly biased from the true AUC. It should be cautioned that
this is on the average, i.e., over the population of all training sets; it is possible that for a single data set (single realization) the
apparent performance canbebetter orworse than the true one. In addition, the classifier had the sameasymptotic performance,
approximately 0.74, for all dimensionalities in the simulation (by design as above).

3.2.2. Nonparametric Inference for the AUC

In the present section, we extend the study carried out in Efron and Tibshirani (1997), and summarized in Section 2.2, to
include theAUCas theperformancemetric. Similarworkhas beendoneby considering the .632 bootstrap and the leave-one-out
cross validation in Sahiner et al. (2001).

3.2.2.1. Mathematical Definitions

Analogously to what has been presented in Section 2.2, and we will follow the same notation, we can extend the literature
to consider the AUC as the summary performance metric. The term design may be used interchangeably with train since the
training phase involves procedures like cross-validation formodel or parameter selection to optimize someperformancemetric.
If only one data set is available for design, and neither the data distribution nor a parametric model is available this is referred to
as the nonparametric situation. In this case, the mean performance of the classifier has to be estimated from the same training
data set.

Before switching to the AUC some more elaboration on Section 2.2 is needed. The simple bootstrap estimator (2.35) can be
rewritten as: �ErrSB =E∗EF

[
L(ηt∗ (x),y)|t∗]

(3.20)
Since there would be some observation overlap between the t and t∗this approach suffers an obvious bias as was introduced in
that section. This was the motivation behind interchanging the expectations and defining the leave-one-out bootstrap (Section
2.2.4.1). Alternatively, we could have left the order of the expectation but with testing on only those observations in t that do not
appear in the bootstrap replication t∗, i.e., the distribution F̂ (∗). We call the resulting estimator �Err(∗) , which is given formally
by: �Err(∗) =E∗EF̂ (∗)

[
L(ηt∗ (x),y)|t∗]

(3.21)

= 1

B

B∑
b=1

[
N∑
i=1
IbiL(ηt∗b (xi),yi)/

N∑
i′=1

Ibi′

]
(3.22)

where the indicator Ibi equals one if the observation ti is excluded from the bootstrap replication t∗b, and equals zero otherwise.
The inner expectation in (3.22) is taken over those observations not included in the bootstrap replication t∗, while the outer
expectation is taken over all the bootstrap replications.

Analogously to Section 2.2 and to what has been introduced above we can define several bootstrap estimators for the AUC.
The start is the simple bootstrap estimate which can be written as:�AUCSB

t =E∗
[
AUCt∗ (F̂ )

]
(3.23)

=E∗

[
1

n1n2

n2∑
j=1

n1∑
i=1
ψ(ĥt∗ (xi), ĥt∗ (xj))

]
, (3.24)

where F̂ → t∗, xi ∈ω1, and xj ∈ω2 (3.25)

This averages the Mann-Whitney statistic over the bootstraps, where AUCt∗ (F̂ ) refers to the AUC obtained from training the
classifier on the bootstrap replicate t∗ and testing it on the empirical distribution F̂ . In the approach used here, the bootstrap
replicate t∗ preserves the ratio between n1 and n2. That is, the training sample t is treated as t = t1 ∪ t2, t1 ∈ ω1, andt2 ∈ ω2 then
n1 cases are replicated from the first-class sample and n2 cases are replicated from the second-class sample to produce t∗1 and
t∗2 respectively, where t∗ = t∗1 ∪ t∗2 ; this was not needed when the performance metric was the error rate. This is because error
rate is a statistic that does not operate simultaneously on two different data sets as the Mann-Whitney statistic does (Mann-
Whitney statistic will be illustrated in subsequent chapters as a two-sample U-statistic). For a limited number of bootstraps the
expectation (3.23) is approximated by:

�AUCSB
t = 1

B

B∑
b=1

[
AUCt∗b (F̂ )

]
(3.26)

i.e., averaging over theB bootstraps for the AUC obtained from training the classifier on the bootstrap replicate t∗b and testing
it on the original data set t.
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The same motivation behind the estimator (2.38) can be applied here, i.e., testing only on those cases in t that are not in-
cluded in the training set t∗b in order to reduce the bias. This can be carried out in (3.26) without interchanging the summation
order. The new estimator is named �AUC (∗)

t , where the parenthesis notation (∗) refers to the exclusion, in the testing stage, of the
training cases that were generated from the bootstrap replication. Formally, this is written as:

�AUC (∗)
t = 1

B

B∑
b=1

[
AUCt∗b (F̂ (∗))

]
(3.27)

= 1

B

B∑
b=1

[
n2∑
j=1

n1∑
i=1
ψ(ĥt∗ (xi), ĥt∗ (xj))Ibi I

b
j /

n1∑
i′=1

Ibi′
n2∑
j′=1

Ibj′

]
(3.28)

The 0.632 estimator can be introduced here in the sameway it was used for the true error rate (see Section 2.2.4.3). The true AUC
for the classifier if trained on a particular training data set t can be written as:�AUCt =AUCt +E∗(AUCt∗(F̂ )−AUCt∗) (3.29)
This is the same approach developed in Section 2.2.4.2 for the error rate. If testing is carried out on cases excluded from the
bootstraps, then (3.29) can be approximated analogously to what was done in Section 2.2.4.3. This gives rise to the 0.632 AUC
estimator: �AUC (.632)

t = .368AUCt + .632 �AUC (∗)
t (3.30)

It should be noted that this estimator is designed to estimate the true AUC for a classifier trained on the data set t (the clas-
sifier performance conditional on the training data set t). This is on contrary to the estimator (3.27) that estimates the mean
performance of the classifier (this is the expectation over the training set population for the conditional performance).

The 0.632+ estimator, �AUC (.632+)
t , develops from �AUC (.632)

t in the same way as �Err(.632+)
t developed from �Err(.632)

t in Section
2.2.4.4. There are two modifications to the details; the first regards the no-information error rate γ, and the second regards to
the definitions (2.52). The no-informationAUCγAUC , an analogue to the no-information error rate γ, is given by (1.61) but with
TPF and FPF given under the no-information distributionE0F (see Section 2.2.4.4). To estimate γAUC assume that there are n1

cases from class ω1 and n2 cases from class ω2 as described above. Assume also for fixed threshold th the two metrics that define
the error rate for this threshold value are TPF and FPF. Also, assume that the sample cases are tested by the classifier and each
sample has been assigned a decision value (log-likelihood ratio). Under the no-information distribution, consider the following.
For every decision value ĥt(xi) assigned for the case ti = (xi,yi), create new n1 +n2 −1 cases; all of them have the same decision
value ĥt(xi), while their responses are equal to the responses of the rest n1 +n2 −1 cases tj j ̸= i. Under this new sample that
consists of (n1 +n2)2 cases, it is quite easy to see that the new TPF and FPF for the same threshold th are given by:

FPF0F̂ ,th =TPF0F̂ ,th = TPF ·n1 +FPF ·n2

(n1 +n2)
(3.31)

This means that the ROC curve under the no-information rate is a straight line with slope equal to one; this directly gives:
γAUC = 0.5 (3.32)

Regarding the definitions (2.52) they should be modified to accommodate the AUC. The new definitions are given by:

�AUC (.632+)
t = �AUC (.632)

t + (�AUC (∗)′
t −AUCt)

.368 · .632 · R̂′

1− .368R̂′ (3.33)

where �AUC (∗)′
t = max(�AUC (∗)

t ,γAUC ), (3.34)

R̂′ =
{

(�AUC (∗)
t −AUCt)/(γAUC −AUCt) if AUCt > �AUC(∗)

t > γAUC

0 otherwise
(3.35)

We note that there are several points of view regarding the relative utility of measuring the “true performance”, i.e., the
performance conditional on a given training data set, versus estimating the mean performance over the population of training
sets. Some users might argue that the conditional performance is the most appropriate, claiming that they will freeze the train-
ers. However, this does not really correspond to the practical world in which practitioners up-date the training as more data
becomes available; in that case the target would be the expected performance over the population of trainers.

3.2.2.2. Experimental Results

Different experiments have been carried out to compare these three bootstrap-based estimators, considering different di-
mensionalities, different parameter values, and training set sizes, all basedon themultinormal assumption for the feature vector.
We use the same experiments described in Section 3.2.1. Here in this section we illustrate the results when the dimensionality p
was five. The number of trainer groups per point (the number of MC trials) is 1000 and the number of bootstraps is 100.

It is apparent fromFigure 3.13 that the �AUC (∗)
t is downward biased. This is a natural opposite of the upward bias observed in

Efron and Tibshirani (1997) when the metric was the true error rate as a measure of incorrectness, by contrast with the true AUC
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Figure 3.13. Comparison of the three bootstrap estimators, �AUC (∗)
t , �AUC (.632)

t , and �AUC (.632+)
t for 5-feature predictor. The�AUC (∗)

t is downward biased, while the �AUC (.632)
t is an over correction for that bias. �AUC (.632+)

t is almost the unbiased version of
the�AUC (.632)

t .

as a measure of correctness. The �AUC (.632)
t is designed as a correction for �AUC (∗)

t ; it appears in the figure to correct for that but
with an over-shoot. The correct adjustment for the remaining bias is almost achieved by the estimator �AUC (.632+)

t . The �AUC (.632)
t

estimator can be seen as an attempt to balance between the two extreme biased estimators, �AUC (∗)
t andAUCt.

Table 3.1 gives a comparison for the different estimators in terms of the RMS and RMSAroundMean values. The RMS is defined
in the present context as the root of the mean squared difference between an estimate and the population mean, i.e., the mean
over all possible training sets. More details about the definitions of both of them are given in Section 3.2.3.

Estimator Mean SD RMS RMS aroundmean Corr. Coef. Size
AUCt 0.6181 0.0434 0 0.0434 1.0000�AUC (∗)

t 0.5914 0.0947 0.0973 0.0984 0.2553�AUC (.632)
t 0.7012 0.0749 0.1128 0.1119 0.2559 20�AUC (.632+)
t 0.6431 0.0858 0.0906 0.0894 0.2218

AUCt 0.8897 0.0475 0.2774 0.2757 0.2231
AUCt 0.6231 0.0410 0 0.0410 1.0000�AUC (∗)

t 0.5945 0.0947 0.0956 0.0990 0.2993�AUC (.632)
t 0.6991 0.0763 0.1066 0.1077 0.3070 22�AUC (.632+)
t 0.6459 0.0846 0.0863 0.0876 0.2726

AUCt 0.8788 0.0499 0.2615 0.2606 0.2991
AUCt 0.6308 0.0400 0 0.0400 1.0000�AUC (∗)

t 0.5991 0.0865 0.0897 0.0922 0.2946�AUC (.632)
t 0.6971 0.0701 0.0961 0.0965 0.2997 25�AUC (.632+)
t 0.6442 0.0817 0.0815 0.0828 0.2758

AUCt 0.8656 0.0471 0.2406 0.2395 0.2833
AUCt 0.6359 0.0358 0 0.0358 1.0000�AUC (∗)

t 0.6035 0.0840 0.0874 0.0901 0.2904�AUC (.632)
t 0.6962 0.0688 0.0906 0.0915 0.2934 28�AUC (.632+)
t 0.6479 0.0792 0.0785 0.0802 0.2719

AUCt 0.8554 0.0472 0.2253 0.2246 0.2747
AUCt 0.6469 0.0343 0 0.0343 1.0000�AUC (∗)

t 0.6170 0.0750 0.0792 0.0807 0.2746
Table 3.1. continued
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Estimator Mean SD RMS RMS aroundmean Corr. Coef. Size�AUC (.632)
t 0.6997 0.0623 0.0818 0.0817 0.2722 33�AUC (.632+)
t 0.6553 0.0761 0.0752 0.0766 0.2656

AUCt 0.8419 0.0439 0.2010 0.1999 0.2434
AUCt 0.6571 0.0308 0 0.0308 1.0000�AUC (∗)

t 0.6244 0.0711 0.0753 0.0783 0.3185�AUC (.632)
t 0.6981 0.0598 0.0710 0.0725 0.3167 40�AUC (.632+)
t 0.6595 0.0739 0.0707 0.0739 0.3092

AUCt 0.8246 0.0431 0.1735 0.1730 0.2923
AUCt 0.6674 0.0271 0 0.0271 1.0000�AUC (∗)

t 0.6357 0.0654 0.0690 0.0727 0.3534�AUC (.632)
t 0.6995 0.0556 0.0615 0.0642 0.3570 50�AUC (.632+)
t 0.6685 0.0690 0.0646 0.0690 0.3522

AUCt 0.8091 0.0406 0.1473 0.1474 0.3517
AUCt 0.6808 0.0217 0 0.0217 1.0000�AUC (∗)

t 0.6533 0.0546 0.0602 0.0611 0.2451�AUC (.632)
t 0.7053 0.0471 0.0527 0.0531 0.2488 66�AUC (.632+)
t 0.6840 0.0568 0.0556 0.0569 0.2477

AUCt 0.7946 0.0355 0.1195 0.1192 0.2499
AUCt 0.6965 0.0158 0 0.0158 1.0000�AUC (∗)

t 0.6738 0.0454 0.0483 0.0507 0.3422�AUC (.632)
t 0.7119 0.0399 0.0405 0.0428 0.3492 100�AUC (.632+)
t 0.7004 0.0452 0.0426 0.0453 0.3448

AUCt 0.7772 0.0312 0.0860 0.0866 0.3596
AUCt 0.7141 0.0090 0 0.0090 1.0000�AUC (∗)

t 0.6991 0.0298 0.0327 0.0334 0.2288�AUC (.632)
t 0.7205 0.0272 0.0273 0.0279 0.2291 200�AUC (.632+)
t 0.7170 0.0285 0.0279 0.0286 0.2294

AUCt 0.7573 0.0228 0.0487 0.0489 0.2277
Table 3.1. Comparison of the different bootstrap-based estimators of theAUC. they are comparable
to each other in the RMS sense, �AUC (.632+)

t is almost unbiased, and all are weakly correlated with the
true conditional performanceAUCt.

3.2.2.3. Remarks

As shown by Efron and Tibshirani (1997), the �Err(1)
t estimator is a smoothed version of the leave-one-out cross validation,

since for every test sample case the classifier is trained on many bootstrap replicates. This reduces the variability of the cross-
validation based estimator. On the other hand, the effective number of cases included in the bootstrap replicates is .632 of the
total sample size n. This accounts for training on a less effective data set size; this makes the leave-one-out bootstrap estimator�Err(1) more biased than the leave-one-out cross-validation. This bias issue is observed Sahiner et al. (2001), as well, when the
performancemetricwas theAUC.This fact is illustrated inFigure 3.14 for �AUC (∗)

t . At every sample sizen the true valueof theAUC
is plotted. The estimated value �AUC (∗)

t at data sizes ofn/.632 andn/.5 are plotted aswell. It is obvious that these values are lower
and higher than the true value respectively, which supports the discussion of whether the leave-one-out bootstrap is supported
on 0.632 of the cases or 0.5 of the cases (as mentioned in Efron and Tibshirani (1997)) or, as here, something in-between.

The estimators studied here are used to estimate the mean performance (AUC) of the classifier. However, the basic motiva-
tion for the �AUC (.632)

t and �AUC (.632+)
t is to estimate the AUC conditional on the given data set t. This is the analogue of �Err(.632)

t

and �Err(.632+)
t . Nevertheless, as mentioned in Efron and Tibshirani (1997) and detailed in Zhang (1995) the cross-validation, the

basic ingredient of the bootstrap based estimators, is weakly correlated with the true performance on a sample by sample basis.
Thismeans that no estimator has a preference in estimating the conditional performance. This fact is elaborated in the following
section.
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Figure 3.14. The true AUC and rescaled version of the bootstrap estimator �AUC (∗)
t . At every sample size n the true AUC is shown

along with the value of the estimator �AUC (∗)
t at n/.632 and n/.5.

3.2.3. Components of Variance of Performance Estimators andWeak Correlation

Section 3.2 shows how the different estimators estimate themean performance. This estimation is a randomvariable whose
randomness comes from the training data set. The bias is not enough to judge estimator efficiency. Rather the square root of the
mean square error (MSE) should be used; theMSE is defined in (2.3). Efron and Tibshirani (1997) suggested to use the difference
between every estimated value from a training data set and the true performance of the classifier trained on this data set. The
following expression and its illustration in Figure 3.15 is very instructive in understanding the different aspects of the new work
undertaken in this dissertation. Formally, this can be written as:

RMS2 =MSE(Ŝti ,Sti ) =EMC
{
Ŝti −Sti

}2 (3.36)

=E2
MC {Ŝti −S}︸ ︷︷ ︸
Bias2(Ŝti ,S)

+EMC {Ŝti − Ŝ}2︸ ︷︷ ︸
Var[Ŝti ]︸ ︷︷ ︸

RMS(Ŝti ,S)≡RMSaroundthemean

+EMC {Sti −S}2︸ ︷︷ ︸
Var[Sti ]

−2Cov(Ŝti ,Sti )

︸ ︷︷ ︸
small

,

where :S =EMC
{
Sti

}
, Ŝ =EMC

{
Ŝti

}
where Sti is the true performance (Err or AUC), and Ŝti is any estimate function of the training data set ti. EMC represents
the expectation approximated by averaging over the MC trials, i.e., EMC ≡ ΣG

i=1 (·)/G. This definition of the RMS implies that
the estimators will be treated as if they estimate the true performance Sti of the classifier conditional on the data set ti. This is
exactly what the .632 and .632+ estimators were designed for, but not the (∗) estimator. Equation (3.36) show the decomposition
of this RMS into four components. The first two components are the bias-squared and the variance for the estimator Ŝti as if it
estimates S, the mean performance, not the true performance conditional on a particular data set ti. The third component is
the variability of the conditional true performance Sti , e.g., see Figure 3.11. The fourth component is the covariance between
the estimator and the conditional true performance. These four components are shown in Table 3.1.

The estimators are comparable in RMS with a little superiority of �AUC (.632+)
t for higher set size; it is almost unbiased as

well. However, Efron and Tibshirani (1997) ran many experiments considering different classifiers and distributions and their
conclusion was quoted in Section 2.4. A comment on their conclusion is in order. As they stated, the results vary considerably
from experiment to experiment, i.e., in some experiments the �AUC (.632+)

t estimator wins while in others the �AUC (.632)
t or even the�AUC (∗)

t does. They concluded:
“…but in terms of RMS error the .632+ rule is an overall winner”

This conclusion was without proposing a metric for deciding the overall winner. It was apparent that the .632+ rule is the
winner in terms of the bias—as was designed for. However, an average for the RMS of every estimator, across all the 24 experi-
ments they ran, is shown in Table 3.2. The estimators �AUC (∗)

t and �AUC (.632+)
t are quite comparable to each other.
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Estimator Average over 24 Exp.
Errt 0�Err(1)

t .083�Err(.632)
t .101�Err(.632+)
t .081

Errt .224

Table 3.2. Average of RMS error of each estimator over 24 experiments run by Efron and Tibshirani (1997). The estimator �Err
(1)
t

is quite comparable to �Err
(.632+)
t .
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Figure 3.15. The lack of correlation (or the very weak correlation) between the bootstrap-based estimators and the true condi-
tional performance. Every line connects the trueperformanceof the classifier trainedonadata set ti and the estimated value. The
figure represents 15 trials of the 1000 MC trials. Two nearby values of true performance may correspond to two widely separated
estimates on different sides of the mean.

A crucial comment must be made on the results of Table 3.1 in the light of the uncertainty components (3.36). The results
show that the RMS and RMSAroundMean are very close to each other. This means that the last two components of (3.36) are
negligible. It is quite interesting to conclude the following: even if the �AUC (∗)

t estimator was designed to estimate the mean
performance and others were designed to estimate the true performance conditional on a particular data set, they agreed in
both objectives. More surprisingly, the last component in (3.36), Cov(Ŝti ,Sti ), is very small. This not because of the relative
comparison between that term and other uncertainty components but because of the lack of correlation between all of the esti-
mators and the true conditional performance; see the correlation coefficient in Table 3.1. This fact was observed in simulations
by others, e.g., Efron (1983); Efron and Tibshirani (1997). An excellent mathematical treatment, Zhang (1995), shows that the
cross-validation estimator should not be used to estimate the true error rate of a classification rule conditional on a particu-
lar training data set because they are uncorrelated. This can shed some light on the weak correlation in Table 3.1, since these
bootstrap estimators have an underlying layer of cross-validation (see Section 2.2.4.1).

The point of the previous paragraph is somewhat subtle; the reader may find the illustration in Figure 3.15 helpful for un-
derstanding it.

This figure shows 15 realizations of the 1000 MC trials of same experiment. On the right are the true AUC values of the
classifier when trained on these different 15 training sets. On the left are the corresponding 15 estimated values of the �AUC (∗)

t
estimator. The lines provide links between the true values and the corresponding estimates. This figure shows that two nearby
true values for the AUC are likely to have two widely separated estimated values on different sides of the mean. This visually
illustrates the lack of correlation (or the weak correlation) between the estimators and the true conditional performance.
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3.3. Estimating the Variability of the Performance Estimators

The results mentioned above mean that if a training data set is available with no information about the distribution, it is
possible to obtain good estimates of the mean AUC of that classifier from this training data set using any of the estimators dis-
cussed above. However, each estimate has an associated variability (shown by the MC simulation). Unfortunately, in a practical
setting, it is not possible to generate different data sets to know the variability of any particular estimator. The next question
then is, having estimated the mean performance of a classifier, what is the associated uncertainty of this estimate, i.e., can an
estimate of the variance of this estimator be obtained from the same training data set? The answer of this critical question is
provided by the method of the influence function analogously to what Efron and Tibshirani (1997) proposed for estimating the
uncertainty in �Err(1)

t . The only estimator suitable for such a method among those discussed until now is the �AUC (∗)
t , since it is

the only smooth estimator, as will be detailed below.
Before proceeding, a very careful investigation of some critical issues is needed. The �AUC (∗)

t , defined in (3.27), is the ex-
pectation over the bootstraps for the AUC that come from training on a bootstrap replicate and testing on only those cases not
included in that bootstrap training sample. The concept of the influence function (Section 2.1.4) can be implemented by per-
turbing a sample case and studying its effect on the variability of the estimator. This perturbation propagates through to the
probability masses of the bootstrap replicates as well. It can be easily shown that (see Efron, 1992) the bootstrap b includes the
case ti Nb

i times with probability gbε,i given by (4.4). The estimator �AUC (∗)
t , after perturbation, is evaluated as:

�AUC (∗)
t (F̂ε,i) =

∑
b g

b
ε,i AUCt∗b (F̂ (∗)

ε,i ) (3.37)

The reader should note that if there is no perturbation, i.e., ε is set to zero, (3.37) is merely reduced to an averaging over the
bootstraps. Details are deferred to Chapter 4.

There is a critical point related to the smoothness of the estimator to be used. This detailed discussion is mentioned here, in
this section, not in 4. Applying the influence function the �AUC (∗)

t statistic enforces distributing thedifferential operator∂/∂εover
the summation to be encountered by the unsmooth statisticAUCt∗b (F̂ (∗)

ε,i ) in (3.37). It is unsmooth since the classifier is trained
on just one data set (very similar to a single iteration of the cross-validation). For better understanding for the smoothness issue,
consider the very simple case where there are just two features and the classifier is designed as (3.2) but with assuming equal
covariance matrices. This is called linear discriminant analysis since the decision surface h(X) = 0 will be a straight line in the
bi-feature plane (generally, it will be a hyper-plane in the p-dimensional feature space). Also for simplicity, consider the true
error as the metric of interest; then the analogue to (3.37) is:�Err(∗)

t (F̂ε,i) =
∑

b g
b
ε,i Errt∗b (F̂ (∗)

ε,i ) (3.38)

A simple simulation in this bi-feature problem was carried out using 1000 bootstraps. The decision surfaces obtained from the
first five bootstrap replicates are shown in Figure 3.16.

A sample is generated from each of two classes and is represented in the figure together with the decision surface obtained
by training on this sample. The decision surfaces obtained from training on the first five bootstraps (one at a time) are drawn
as well. Each decision surface trained on the bootstrap replicate t∗b and tested on the sample cases not included in the training
produces an estimateErrt∗b (F̂ (∗)

ε,i ), which is clearly unsmooth. This is because the estimate does not change with a change in a
feature value, e.g.,X1, unless this change allowsXi to cross the decision surface. This lack of smoothness leads to the conclusion
that the differential operator of the influence function is suitable neither for �Err(∗)

t nor �AUC (∗)
t .

The other way to define the estimated true error rate is the leave-one-out bootstrap defined in (2.38). The two estimators
are very close in their estimated values, in particular asymptotically. In addition, both are smooth, yet, �Err(1)

t has an inner
summation, as in (2.37), which is a smooth function too. This is so since any change in a sample case will cross many bootstrap-
based decision surfaces (some extreme violations to this fact may occur under particular classifiers). The smoothness of these
two estimators along with the non-smooth componentErrt∗b (F̂ (∗)

ε,i ) is shown in Figure 3.17.
In brief �Err(1)

t and �Err(∗)
t almost give the same estimated value and both are smooth. However, the former has a smooth

inner summation, whichmakes it suitable for using the differential operator of the influence function. On the contrary, the latter
has a non-smooth inner summation, which is not suitable for the differential operator of the influence function.

The above discussion suggests introducing an analogue to �Err(1)
t formeasuring the performance in AUC. This newestimator

ismotivated from (3.23) the sameway the estimator �Err(1)
t wasmotivated from (2.37). The simple bootstrap estimator (3.23) can

be rewritten as:

�AUCSB
t = 1

n1n2

n2∑
j=1

n1∑
i=1
E∗

[
ψ(ĥt∗ (xi), ĥt∗ (xj))

]
(3.39)

= 1

n1n2

n2∑
j=1

n1∑
i=1

B∑
b=1

[
ψ(ĥt∗b (xi), ĥt∗b (xj))/B

]
(3.40)

Inwords, the procedure is to select a pair (one observation fromeach class) and calculate for that pair themean—overmany
bootstrap replications and training—of the Mann-Whitney kernel. Then, average over all possible pairs. This procedure will be
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Figure 3.16. Different linear decision surfaces obtained by training on different bootstrap replicates from the same training data
set. The first case from class 1 is chosen for perturbation. Changing a feature, e.g., X1, has no change on the decision value of a
single surface unless the case crosses that surface.
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replicate. The first two are smooth while the third is not. The estimated true error is plotted vs. change in the value of the first
feature.

optimistically biased because sometimes the testers will be the same as the trainers. To eliminate that bias, the inner bootstrap
expectation should be taken only over those bootstrap replications that do not include the pair (ti, tj) in the training. Under that
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MetricM LDA QDA Diff.
EMt .7706 .7163 .0543

SDMt .0313 .0442 .0343
EM̂ (1,1) .7437 .6679 .0758

SDM̂ (1,1) .0879 .0944 .0533

E áSD ̂ (1,1)
M .0898 .1003 .0708

SD áSD ̂ (1,1)
M .0192 .0163 .0228

Table 3.3. Estimating the uncertainty in the estimator that estimates the difference in performance of two competing classifiers,
the LDA and the QDA. The metricM representsAUC1 for LDA,AUC2 for QDA, and ∆ for the difference.

constraint, the estimator (3.39) becomes the leave-pair-out bootstrap estimator:

�AUC(1,1) = 1

n1n2

n2∑
j=1

n1∑
i=1

�AUCi,j ,where (3.41)

�AUCi,j =
B∑
b=1

Ibj I
b
i ψ(ĥt∗b (xi), ĥt∗b (xj))/

B∑
b′=1

Ib
′

j I
b′
i (3.42)

The two estimators �AUC (∗) and �AUC(1,1) produce very similar results; this is expected since they both estimate the same thing,
i.e., the mean AUC. However, the inner component �AUCi,j of the estimator �AUC(1,1) also enjoys the smoothness property of�Err(1) discussed above. Chapter 4 discusses how to estimate the uncertainty of the estimator �AUC(1,1) using the influence func-
tion.

3.4. Two Competing Classifiers

If the assessment problem is how to compare two classifiers, then the metric to be used is the conditional difference
∆t =AUC1t −AUC2t , (3.43)

or the mean, unconditional, difference
∆= E∆t = E

[
AUC1t −AUC2t

]
(3.44)

Then it is obvious that there is nothing new in the estimation task, i.e., it is merely the difference of the performance estimate of
each classifier, i.e.,

∆̂= áEAUC1t − áEAUC2t , (3.45)
where each of the two estimators in (3.45) is obtained by any of the estimators discussed in section 3.2. A natural candidate,
from the point of view of the present dissertation is the leave-pair-out estimator �AUC(1,1)—because of the weak correlation and
the smoothness issues discussed in the current chapter. Then two questions arise:

First, how to estimate the variance of ∆t. That is, if ∆t > 0 then how uncertain are we when saying classifier 1 is better than
classifier 2—or vice versa. This problem is the same as estimating the variance of one classifier VarAUCt. It can be pursued by
adopting either the one-data-set or the two-data-set framework. The former is the framework that has been used, so far, in this
dissertation for estimating AUCt, EAUCt, and VaràAUCt, but not yet VarAUCt, which is one of the future work proposals. The
latter is the framework considered in Chapter 6 to estimate the same metrics as well as VarAUCt and other important metrics.

Second, how to estimate the uncertainty of ∆̂. This is very similar to estimating the variance in áEAUCt, which is discussed
in Chapter 4. There is nothing new in estimating Var∆̂. It is obtained by replacing �AUC(1,1) , in Chapter 4, by the statistic ∆̂ in
(3.45). Typical values are given in Table 3.3, for demonstration, when comparing the linear and quadratic discriminants, where
the training set size per class is 20 and number of features is 4.

Estimating the uncertainty in ∆̂ should in fact be a central point for the field of statistical pattern recognition, or even com-
putational intelligence in general. Most practitioners simply provide simple estimates of the conditional performance of their
favorite classifier, and similarly for a competing classifier. It is rare to see estimates of the uncertainty of measures of classifier
performance, and especially rare to see estimates of the uncertainty in the difference of measures of performance of competing
classifiers.

3.5. The Partial Area Under the ROC Curve

All of what have been discussed, i.e., assessing classifiers under the ROC analysis, concerns the total area under the curve,
i.e., the AUC. In that sense a classifier is superior to another if it has a larger AUC. However, in the ROC space, two ROC curves,
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for two different classifiers, may cross each other. Hence, they interchange the superiority region, i.e., the higher ROCbefore the
crossing point will be the lower after it. If some information is available on the operating region, then it will not be utilized if the
AUC is used as a summary measure. This proposes the Partial Area Under the Curve (PAUC), which is discussed in Chapter 5.

3.6. Assessing Classifiers From Two Independent Data Sets

All the former matter was regarding assessing classifiers, in terms of AUC or PAUC, from a single data set. That is, the
available data are considered to be a single data set without deliberate separation between the trainers and testers. This enabled
us to utilize the most available information for training and testing by training on bootstrap replications from the available data
then testing on the remaining observations not included in the bootstrap replications. In some situations, e.g., in a regulatory
setting, it is required to separate, before hand, the training set from the testing set. In such a paradigm, no contamination or
mixing of information across the independent sets is allowed; training is pursued on a completely separate set of the testing
set. This principle is called the data hygiene regulation. Chapter 6 considers the mentioned problem and introduces a formal
solution.
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CHAPTER 4

Estimating the Uncertainty in the EstimatedMean Area Under the ROC Curve of a
Classifier

4.1. Introduction

In Chapter 3 we found that the three bootstrap-based estimators proposed by Efron and Tibshirani (1997), namely, the (∗),
the .632, and the .632+ bootstrap, showed comparable performance in terms of a mean-square error measure. In the present
chapter, we focus on the leave-pair-out bootstrap estimator �AUC(1,1) and estimate its uncertainty in terms of the standard error
measure. We adopt this approach because all of the estimates are only weakly correlated with the corresponding true values,
i.e., conditional on the given training set (see Section 3.2.3). The .632 and .632+ estimators have a component of the apparent
performance which is unsmooth, while the (∗) estimator has an unsmooth inner component (see Section 3.3).

4.2. Influence Function and Estimating the Variance of �AUC(1,1)

When the distribution of the data is known, the optimal classifier is the Bayes one; then, in principle, the population param-
eters, e.g., class means, covariances, etc., can be obtained in closed form, or at least numerically if the closed form is prohibitive.
For mathematical analysis of classifier performance under the multinormal assumption, see Fukunaga (1990). When either the
underlying form of the distribution is unknown, or the form is known but its parametersmust be estimated, any estimator of the
mean performance of the classifier is itself a random variable and a function of the design data set. There are many approaches
to estimating the variability of a statistic nonparametrically, e.g., jackknife, bootstrap, influence function, etc. (see Chapter 2).
In our case the statistic of interest, i.e., the leave-pair-out estimator (3.41), is a bootstrap-based estimator. Bootstrapping again
to estimate the uncertainty is, at the best, not computationally efficient; in many situations it will not be feasible since the time
for even one pass of training is typically very long. This is one of the situations where the method of the influence function offers
a practical solution.

Equation (2.29) gives the nonparametric estimate of variance for a statistic s under the empirical distribution F̂ . Efron and
Tibshirani (1997) used this powerful approach to estimate the standard error of the estimator �Err(1) . In the present chapter, we
extend their study to the task of estimating the standard error of the estimator �AUC(1,1) .

Assume that the available data set t is comprised of two data sets, one for each class, i.e. t = t1 ∪ t2, t1 ∈ω1, and t2 ∈ω2. The
sizes of the sets are n1 +n2 =N . We assume the two sets are independent, and t1 ∼F1 and t2 ∼F2. The functional s now will be
our metric �AUC(1,1) ; then there is no covariance term and it is easy to see that:

ŝd=
√√√√ 1

n2
1

n1∑
i=1
Û2

1i
+ 1

n2
2

n2∑
j=1

Û2
2j
, where (4.1)

Ûki =
∂�AUC(1,1) (F̂kε,i )

∂ε

∣∣∣∣∣
ε=0

, ti ∈ tk, k = 1,2 (4.2)

The perturbation (2.25) when applied, independently, for F̂1 and F̂2 gives:

f̂kε,i (xj) =
{ [

1+ (nkδij −1)ε
]

/nk, xj ∈ωk
1/n3−k, xj ∈ω3−k

(4.3)

where k = 1,2, and the subscript 3−k accounts for class 2 and 1 respectively. This affects the probability mass of a bootstrap
replication b. A straightforward extensionof the lemmaof Efron (1992) allowsus to obtain theprobability gkε,i (b) of thebootstrap
b that includes the observation ti ∈ωk (k = 1,2) Nb

i times. It is easy to show that:

gkε,i (b) = (1−ε)nk (1+ nkε

1−ε )N
b
i (1/n1)n1 (1/n2)n2 (4.4)
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A similar formulawas given originally in Efron (1992) for one distributionF . Under F̂1ε,i and F̂2ε,i the estimator �AUC(1,1) is given
by:

�AUC(1,1)
ε,i

(
F̂kε,i

)
=

n2∑
j2=1

n1∑
j1=1

f̂1ε,i (j1)f̂2ε,i (j2)

B∑
b=1

ψ(ĥb(j1), ĥb(j2))Ibj1
Ibj2
gkε,i (b)

B∑
b=1

Ibj1
Ibj2
gkε,i (b)

(4.5)

The derivative ∂�AUC(1,1) (F̂kε,i )/∂ε in (4.2) can be obtained formally, similarly to what was done in Efron and Tibshirani (1995),
by writing (4.5) as: �AUC(1,1)

ε,i =
n2∑
j2=1

n1∑
j1=1

A(ε)
B(ε)

C(ε)
(4.6)

where A(ε) = f1ε,i (j1)f2ε,i (j2), B(ε) = Σbψ
(
ĥb(j1), ĥb(j2)

)
Ibj1
Ibj2
gkε,i (b), and C(ε) =

ΣbI
b
j1
Ibj2
gkε,i (b). Then the derivative Ûki can be written as:

Ûki = I +II +III (4.7)
where,

I =Σj2Σj1A
′ (0)B (0)/C (0) ,

II =Σj2Σj1A (0)B′ (0)/C (0) ,

III =−Σj2Σj1A (0)C ′ (0)B (0)/C2 (0) . (4.8)
To simplify the notation, if ti ∈ t1 then the derivatives of (4.3) and (4.4) are given by:

∂f1ε,i (j1)

∂ε
= δij1 −1/n1, (4.9)

∂g1ε,i (b)

∂ε
=n1(Nb

i −1)(1/n1)n1 (1/n2)n2 (4.10)

Then the three terms above are given by:

I = �AUCi− �AUC(1,1) , (4.11)

II =∑
j1

∑
j2

1

n2

∑
bψ(ĥb(j1), ĥb(j2))Ibj1

Ibj2
(Nb

i −1)∑
b′ I

b′
j1
Ib

′
j2

, (4.12)

III =− 1

E∗
[
Ibj1
Ibj2

] 1

n2

∑
j2

∑
j1
AUCj1j2 Cov∗

[
Ibj1
Ibj2
,N b

i

]
, (4.13)

�AUCi =
1

n2

∑
j2

∑
bψ(ĥb(i), ĥb(j2)Ibi I

b
j2∑

b′ I
b′
i I

b′
j2

, (4.14)

�AUCj1j2 =
∑
bψ(ĥb(j1), ĥb(j2))Ibj1

Ibj2∑
b′ I

b′
j1
Ib

′
j2

(4.15)

where the expectationE∗ and the covariance Cov∗ are takenover all possible combinationsof bootstrap replications, i.e.,nn1
1 ·nn2

2
replications. That is ,E∗ [X] =ΣbXb/B, and Cov∗

[
x,y

]=E∗
[
x

(
y−E∗y

)]
. Then it is not hard to show that:

Cov∗
[
Ibj1
Ibj2
,N b

i

]
=E∗

[
Ibi I

b
j2

]
/(n1 −1) (4.16)

We use in our simulations the balanced bootstrap mechanism. This is implemented by simulating a string consisting of indices
ranging from 1 to n and copying this string B times. The n ·B indexes are shuffled randomly then repartitioned into B strings.
This mechanism is proposed by Davison, Hinkley and Schechtman (1986) to speed up convergence towards the asymptotic
bootstrap expectation. Just as was noticed by Efron and Tibshirani (1997) for the true error simulations, it has little effect on the
results here. In that case we have:

E∗Nb
i = 1 (4.17)

Combining (4.11) through (4.17) and substituting back in (4.7), a little algebra yields:

Û1i =
(
2+ 1

n1 −1

)
(�AUCi− �AUC(1,1) ) (4.18)

+∑
b

1

n2
(Nb

i −1)
∑

j2

∑
j2

ψ(ĥb(j1), ĥb(j2))Ibj1
Ibj2∑

b′ I
b′
j1
Ib

′
j2
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.1225 .1097 .1027 .1211 .1458 .1007

.1211 .0834 .1021 .1003 .1064 .1042

.0997 .1170 .1069 .0913 .0996 .1288

.1082 .0983 .1177 .1189 .1159 .1021

.1268 .0815 .1031 .1147 .0933 .1113

.0953 .1109 .1073 .1029 .1259 .1120

.1098 .1132 .0856 .1021 .1319 .0941

.0979 .1071 .1126 .0992 .1091 .1055

.1156 .1154 .1140 .1258 .1065 .1157

.1125 .0874 .0932 .0997 .1008 .1025

.1138 .1333 .1159 .1139 .1195 .1149

.1147 .1074 .1007 .1017 .1102 .1054

.1093 .1330 .1133 .1133 .1161 .0989

.1157 .1212 .1100 .1055 .1107 .0947

.1171 .1121 .0952 .1015 .1192 .1078
Table 4.1. Ninety estimates of the variance of AUC (1,1) using the method of the influence function. Each estimate is obtained
from a single data set, and the entire process is repeated over independent MC trials. These 90 values have an average of .1090
(compare to 0.0930, the true standard deviation obtained from MC) with standard deviation of .0114.

For ti ∈ t2 (4.18) will be the same for Û2i , but with exchange of n1 and n2.
The derivative given in (4.1) can also be evaluated numerically for (4.5) by substituting a very small value for ε, typically 10−3

to 10−4 was adequate in our simulations.

4.3. Simulation Results

The concept of the influence function is completely nonparametric. To demonstrate it, however, it is most straightforward
to simulate data from a particular distribution. Consider the same experiments of Section 3.2. We assume, for simplicity, n1 =
n2 =n. Monte-Carlo (MC) simulation was carried out, typically with 10,000 trials, to closely approximate the true variance of the
finite-sample estimator �AUC(1,1) . In each trial n observations are sampled from the underlying distribution and over the 1000
trials the true variability is calculated. From each trial, the true variability is also estimated using the influence function method.
The results show that—for the case of linear and quadratic classifiers studied here—the true variability can be estimated with
very little bias (the error is always on the order of one standard deviation) over a wide range of dimensionalities ( from 2 to 15)
and sample sizes (from 6 to 100 cases per class). Table 4.1 shows the standard error estimate of the first 90 trials obtained from
an experiment with p= 5, n= 20, c= .5477 andB = 5000. With these parameters, the true mean AUC of the classifier was 0.7575.
The values should be compared to the true standard error obtained from MC, which was .0930. The 90 estimation values have
an average of .1090 with standard deviation of .0114.

Table 4.2 presents results fromavariety of experimentswithdifferent combinations of classifier, dimensionality, and sample
size. The LDF classifier is the linear discriminant function under the assumption that the covariance matrices of the two classes
are equal. The QDF is the quadratic one, where each covariance matrix is estimated separately. In all experiments, c is set to
equal to

√
1.5/p which gives a Mahalanobis distance of 1.5. The true mean and standard deviation of the estimator �AUC(1,1)

is obtained over 10,000 trials of MC simulation. However, the mean and standard deviation for the influence-function-based
estimator, ŝd, is obtained from only the first 100 trials because of the limitation of execution time.

4.4. ExperimentsWith Real Data

Another experiment is carried out on a large real-world data set obtained from the UCI repository of machine learning
databases Newman and Asuncion (2007). The data set used is the “Adult” data of Ron Kohavi and Barry Becker. We used four
of the continuous features with 1000 testers per class and 10,687 trainers per class. In order to challenge the small-sample
performance of our estimators—and obtain Monte Carlo estimates of the corresponding population quantities—the trainers
are divided into 534 groups (the number of MC trials), each with 20 observations per class. The classifier used was the linear
discriminant classifier and gave a true mean AUC of .7589. The AUC obtained over the MC simulations had a “true” standard
deviation of .0902. Table 4.3 shows the estimation of the standard deviation obtained from the influence function method when
applied to the first 90 trials. These 90 estimates have an average of .0963 (vs. the true value .0902) with standard deviation of
.0188.
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Classifier p n MC = 10000 MC = 100
EMC (�AUC(1,1) ) sdMC (�AUC(1,1) ) EMC (ŝd) sdMC (ŝd)

LDA 15 40 .7012 .0654 .0734 .0080
LDA 15 25 .6567 .0815 .0925 .0120
LDA 10 40 .7296 .0641 .0685 .0083
LDA 10 25 .6951 .0826 .0884 .0124
LDA 10 15 .6429 .1048 .1091 .0196
LDA 5 40 .7664 .0589 .0631 .0095
LDA 5 25 .7441 .0796 .0795 .0148
LDA 5 15 .7097 .1089 .1102 .0226
LDA 2 25 .7868 .0693 .0696 .0156
LDA 2 15 .7710 .0986 .0956 .0288
LDA 2 6 .7129 .1768 .1571 .0666
QDA 2 25 .7580 .0792 .0789 .0164
QDA 2 15 .7257 .1088 .1064 .0273

Table 4.2. Different experiments under different dimensionality p, sample size n, and two different classifiers. The true mean
and standard deviation for the estimator AUC (1,1) are obtained from 10, 000 MC trials. The mean and standard deviation of the
estimated standard deviation, sd, are obtained from 100 MC trials. Notice the closeness of the mean of the estimates,EMC (sd),
to the MC results.

.1306 0943 .1018 .1083 .1075 .0829

.1232 0783 .1161 .0837 .0790 .1075

.0883 1029 .0824 .1132 .1566 .0884

.1345 1023 .0892 .0813 .1050 .1140

.0864 0828 .1065 .0684 .0726 .0904

.1021 0724 .1171 .0885 .0797 .0954

.0671 0928 .1331 .1042 .0725 .0603

.0786 0849 .1053 .0884 .1017 .0813

.1303 0876 .1089 .0750 .0797 .0648

.1002 1038 .0716 .1105 .0605 .0879

.1101 0929 .0911 .1041 .0682 .1277

.1119 0862 .1271 .0909 .0867 .1022

.0929 1294 .1102 .0785 .0855 .1080

.1005 0728 .0979 .0926 .0944 .0804

.1306 0943 .1018 .1083 .1075 .0829
Table4.3. Ninety estimates of the variance ofAUC (1,1) using themethodof the influence functionon the real data set experiment.
Each estimate is obtained from a single data set, and the entire process is repeated over independent MC trials. These 90 values
have an average of .0963 (compare to .0902, the true standard deviation obtained from MC) with standard deviation of .0188.

4.5. Chapter Summary

Our study for the bootstrap-based estimators indicates that the estimator �AUC (∗) discussed in Chapter 3 and the new es-
timator �AUC(1,1) defined here estimate the same metric, the mean AUC of a classification rule, that is, not conditional on a
particular training set. The �AUC(1,1) estimator enjoys the smoothness property of �Err(1) and leads to a powerful method for
estimating the standard error of AUC estimates using the same bootstrap samples used for the mean estimate.

A key feature of this method of estimating the standard error of the AUC estimates is that it reflects the finite size of samples
used to train the classifier as well as the finite size of samples used to assess its performance. Methods of assessing the uncer-
tainty of performance estimates based on conventional cross-validation, e.g., Bradley (1997), do not incorporate the variability
inherent in the finite training sample because the training sets in the various partitions are similar to one another. Suchmethods
are therefore essentially conditional on the given training set.

Application of the approach to the linear classifier over a range of dimensionalities and finite-sample sizes produced results
with very small bias.
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CHAPTER 5

The Partial Area under the ROC Curve: Its Properties and Nonparametric Estimation
for Assessing Classifier Performance

5.1. Introduction

When two competing ROC curves cross, as in Figure 5.1, the AUC is no longer an unambiguous summary measure of per-
formance. In addition, if it is known a priori that the classifier will be used only over a narrow range of environments, a different
summary measure of performance is desirable. The most commonly used distinction in medical testing, for example, is that be-
tween the screening environment where the disease prevalence is typically low and that of the diagnostic work-up environment
where the disease prevalence is typically higher. Thus, it may be of interest in the screening environment to restrict consider-
ation of the ROC curve to the low false-positive region (in which case, classifier 1 in the figure would be superior) and in the
diagnostic environment to restrict consideration of the ROC curve to the high true-positive region (in which case, classifier 2
would be superior). These considerations suggest the use of a summary measure of performance that embraces only the partial
area under the ROC curve (PAUC) in a particular operating region of interest.

In Section 5.2, we will give a formal definition of the PAUC and derive several of its properties. In Section 5.3.1, we estimate
the PAUC nonparametrically (cf. parametric applications in Jiang, Metz and Nishikawa, 1996; McClish, 1989) and estimate, as
well, the uncertainty in the estimation. Section 5.4 provides experimental and simulation results.

5.2. The Partial Area under the Curve (PAUC)

5.2.1. Definitions and properties in themean

In this section we will give a formal definition of a nonparametric statistic that is a generalization of the Mann-Whitney
version of the Wilcoxon statistic and show that this statistic corresponds to what is intuitively understood as the PAUC. We then
derive several properties of this statistic in the mean. By ηt we denote a classifier conditional on a particular training set t. As
described in Chapter 3, the resulting performance metrics thus are said to be conditional on t; they become random variables if
one conceives of replicating a given experiment with independent training sets drawn from the population.

Definition 5.1. Assumeweare given a classification rule ηt and the corresponding log-likelihood ratio ĥt. Assume that it is known
from the testing environment that only threshold or cut-off values th greater than a specified threshold thc are of interest. Then,
an appropriate metric for measuring the ability of the classifier to separate the two classes is the separability function SPt(thc)
defined by:

SPt(thc) = Pr
[
ĥt(X |ω1) > ĥt(X |ω2) > thc

]
(5.1)

Theorem 5.2. The metric defined in (5.1) is equal to the partial area under the ROC curve (PAUC) given by:

SPt(thc) =
∫ c

0
TPF tdFPF t

=PAUCt(thc), where (5.2)

c=
∫ ∞

thc

dFĥt(X |ω2)

Proof. For ease of notation, we name the random variables ĥt(X |ωi), i = 1,2 by X and Y respectively, where, for simplicity,
FX and FY will be referred to as the left and right distributions and FXY as the joint distribution, similar to the diseased and
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Figure 5.1. Two ROC curves for two different classifiers. Classifier 1 outperforms classifier 2 at the lower scale of the FPF; then
classifier 2 is superior to classifier 1 until the end of the FPF scale.

nondiseased distributions in diagnostic testing (see Figure 1.3); then:

SPt(thc) =
∫ ∞

thc

dx

∫ ∞

x
dyfXY (x,y) (5.3)

=
∫ ∞

thc

dxfX (x)
∫ ∞

x
dyfy(y)

=
∫ thc

∞
−dxfX (x)

∫ ∞

x
dyfy(y)

=
∫ c

0
dFPF t(x)TPF t(x), where

c=FPFt(thc) =
∫ ∞

thc

fX (x)dx

Comparing this with (3.15) shows that SPt(−∞) is the conventional AUCt and PAUCt(∞)
= 0.

Theorem 5.3. The conditional performance of a classification rule ηt trained on the training data set t and measured in terms of
the PAUC is a monotonically nonincreasing function of the cutoff threshold thc.

Proof. Assume that thc1 < thc2 , then by Theorem 5.2 we have:
PAUCt(thc2 ) =PAUCt(thc1 )− (Pr

t

[
Y >X > thc1

]−Pr
t

[
Y >X > thc2

]
) (5.4)

=PAUCt(thc1 )−∆,

where∆ is the probabilitymeasure, in the two-dimensional probability subspace, of the set (Y >X)∩(thc1 <X < thc2 )—aplot in
theX–Y probability space analogous to Figure 5.2 makes this visually obvious. Hence, ∆≥ 0 and PAUCt(thc2 ) ≤PAUCt(thc1 ).

Corollary 5.4. The expected value ofPAUCt (thc), i.e.,Et [PAUCt (thc)], over the population of training sets t is amonotonically
nonincreasing function of the cutoff threshold thc.

Proof. The proof follows immediately by taking the expectation of both sides of (5.4).

5.2.2. Definitions and properties of the variance

The next critical issue when assessing a classifier is the variance, i.e., the uncertainty of the performance metric under vari-
ation of the training sets. One might expect from the monotonicity of the mean of the PAUC with the threshold that the variance
of the PAUC might behave qualitatively in the same manner. Our simulation results, however, reviewed below in Section 5.4,
show that the variance of the classifier performance, measured in terms of the PAUC over the population of trainers, increases
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Figure 5.2. The different areas of integration, I1,I2, and I3, in theX–Y space.

with the threshold value until it reaches a peak, and then it decays towards zero. This counter-intuitive result led us to explore
the issue theoretically for some special cases that are tractable. The following theorem gives an interpretation for the observed
phenomenon under the assumption that the distributions for the log-likelihood ratio come from the location-scale family; see
Casella and Berger (2002, pp. 241)

Theorem 5.5. Assume that the two distributions of the log-likelihood ratios under the variation of the training data set come
from the location-scale families, with location parameters θ1(t), θ2(t), and a common scale parameter θ3(t), whose means and
covariances are given bymi,σij , i,j = 1,2,3 respectively. These random parameters depend on the particular training sample.
The first-order Taylor-series approximation for the variance of PAUCt(thc) of a classifier is given by the quadratic form:

Var[PAUCt (thc)] ≈ d′Σd, (5.5)

d′ =
(

(A1 −A2)

m3
,−A2,

((thc−m1)A1 − (m1 −m2)A2)

m2
3

)
,

A1 = fX
(
thc−m1

m3

)(
1−FY

(
thc−m2

m3

))
,

A2 =
∫ ∞
thc−m1

m3

fX (x)fY

(
x+m1 −m2

m3

)
dx

Proof. For any set of random variables Ti, 1 ≤ i≤ k define the random vector T = (T1, ...,Tk). Any scalar differentiable function
g(T ) can be approximated using the first-order Taylor-series expansion by:

g(t) ≈ g (E [T ])+
k∑
i=1
g(i) (E [T ]) (ti−E [Ti]) , (5.6)

where g(i) (E [T ]) = ∂g (t)/∂ti|t=E[T ]. Then the variance Var
[
g (T )

]
can be approximated by:

Var
[
g
]≈ k∑

i=1

[
g(i) (E [T ])

]
2 Var[Ti]+2

∑
i>j
g(i) (E [T ])g(j) (E [T ])Cov

(
Ti,Tj

)
(5.7)

It is convenient to write (5.7) in more compact vector-matrix notation as:
Var

[
g
]= d′Σd, (5.8)

where d =
(
g(1), . . . ,g(k)

)
= ∇g, where ∇ = (

∂/∂t1, . . .,∂/∂tk
)

;Σ = ((σij)), σij = Cov
(
Ti,Tj

)
. For our problem, under the location-

scale-family assumption, the two distributions are given by fX ((x−θ1)/θ3)/θ3 and fY
((
y−θ2

)
/θ3

)
/θ3 respectively. By replacing

g in the above equations byPAUCt(thc) and T by
(
θ1 (t) ,θ2 (t) ,θ3 (t)

)
, then using (5.3) and straightforward calculus, (5.5) follows.

Corollary 5.6. The variance of the PAUC, unlike the conditional and themeanPAUC, is not necessarily amonotonically decreas-
ing function of the threshold.
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Proof. The first derivative of (5.8) is given by the bilinear form:
∂Var[PAUCt (thc)]

∂thc
= 2d′Σ

∂d

∂thc
, where (5.9)

∂d1

∂thc
= 1

m2
3

f ′X

(
thc−m1

m3

)(
1−FY

(
thc−m2

m3

))
,

∂d2

∂thc
=− 1

m2
3

fX

(
thc−m1

m3

)
fY

(
thc−m2

m3

)
,

∂d3

∂thc
= (thc−m1)

∂d1

∂thc
+ 1

m3
(thc−m2)

∂d2

∂thc

+ 1

m2
3

(
1−FY

(
thc−m2

m3

)
fX

(
thc−m1

m3

))
It is beyond the scope of the present work to use this integral-differential equation to find the maxima and minima using (5.9).
It is sufficient for our present purposes to show that there are conditions under which the variance can exhibit a maximum.
Consider the region where the left tail of the right density function has almost decayed, i.e., fY ((thc−m2)/m3) ≈ 0, then the first
derivative in (5.9) will be zero at the points of maxima and minima of fX if at those points the following condition is satisfied:

fX

(
thc−m1

m3

)(
σ13 + thc−m1

m3
σ33

)
/A2 +σ33

(
m1

m3

)
−σ13 (5.10)

=σ23 +m2

(
σ33

m3

)
Note that Var[PAUCt (−∞)] ≈ 0 and Var[PAUCt (∞)] = 0 since PAUCt(∞) = 0; then if (5.10) is satisfied this will guarantee that
Var[PAUC] will exhibit a local maximum. Since the L.H.S. of (5.10) is a function of the distribution, while the R.H.S. is function
only in theparameters, then for anyvaluegivenby theL.H.S. therewill alwaysbevaluesof theparameters that satisfy the equality.
Hence, the proof is complete.

A more clear interpretation for (5.10) is available by considering a special case of the location-family, not scale, distribution
where µ1 and µ2 are uncorrelated, i.e., σ12 = σ13 = σ33 = 0. In such a case, (5.10) will always be satisfied and the variance of the
PAUCwill always exhibit amaximumat the peak of the left distribution providing the right distribution has decayed sufficiently.
This is intuitively clear since in the region of log-likelihood spacewhere the left tail of the right distribution is zero, (5.1) becomes
SPt(thc) = Pr

[
ĥ (X |ω2) > thc

]
, which can be calculated, if we have a sufficiently large number of testers, by counting how many

observations achieve this inequality. If thc occurs at a maximum of fX , which is a very dense neighborhood of the random
variable ĥ (X |ω2), any sampling variation in the training set will be reflected in a variation of the density function fX , especially
around thc the dense region, and this variation will be propagated into the fraction of times the inequality is satisfied.

Inaddition, still under that special caseofhavingσ12 =σ13 =σ33 = 0, thePAUCcanbe seen, approximately, as 1
n1

×Binomial(n1,p);
where n1 is the number of testers belonging to distribution 1 and having thc < ĥ and p = Pr

[
ĥ (X |ω2) > thc

]
. In such a case the

peak of the variance has the value of p(1−p)/n1.

5.3. Nonparametric Estimation

5.3.1. Estimation of Mean Performance

A nonparametric bootstrap-based estimator for the PAUC can be defined by an extension of the estimator proposed in
Section 3.2 for estimating the AUC. By defining the kernel:

ψ(x,y,thc) =
{

1 thc <x< y
0 otherwise

(5.11)

where continuous distributions are assumed, the mean PAUC of a classifier will be estimated by:

áPAUC(1,1)
(thc) = 1

n1n2

n2∑
j=1

n1∑
i=1

áPAUCi,j(thc), where (5.12)

áPAUCi,j(thc) =
B∑
b=1

Ibj I
b
i ψ

(
ĥt∗b (xi) , ĥt∗b

(
xj

)
, thc

)
/

B∑
b′=1

Ib
′

j I
b′
i

Here, Ibi is the indicator function that equals one when the bootstrap replication b does not include the observation i, and
zero otherwise. The component áPAUCi,j(thc) is the average of the kernel ψ(i,j,thc) over all bootstrap replications that do not
include the observations i and j. This averaging approximates the expectation over the population of training sets. The average
in equation (5.12) approximates the expectation over the population of testers.

50



It is expected that the leave-pair-out estimator will greatly attenuate the increase-in-variance phenomenon described in
Corollary 5.6 because of the averaging or smoothing effect of the bootstrap summation in (5.12). This will be demonstrated in
the example simulations in Section 5.4.

It is typical in the literature on classifier performance assessment to review the so-called apparent error or training error. It is
always demonstrated that, for the case of a finite sample size, the apparent error is biaseddownward, or correspondingmeasures
of goodness such as the AUC are biased upward, compared to the conservative approach of using independent testers, or even
compared to themeanperformance over the population. Wehave noticed that the PAUCcanbreak this pattern for a small range
of values of the threshold. We thus formalize this observation with the following theorem.

Theorem 5.7 (Crossover of apparent and true PAUC). It is not necessary that the apparent PAUC, as an estimator of the true
PAUC, be upward biased. In particular, it can be downward biased if the apparent distribution of the log-likelihood ratio (i.e.,
when the classifier is trained and tested on the same finite samples) is a location-scaled version of the true distribution.

Proof. Assume that the true distribution of the log-likelihood ratio, i.e., the distribution when the trained classifier is tested on
the entire population of testers, is given by fX and fY , for the left-hand and right-hand distributions respectively. Then under
the assumption of the theorem, the apparent distribution will be given by: fX

((
x−µ1

)
/σ

)
and fY

((
y−µ2

)
/σ

)
respectively, with

µ1 < 0 andµ2 > 0 to satisfy the expectation that trainingand testingon the sameobservationswill generatemore class separability
than will be found in the population when trainers and testers are independently sampled. Figure 5.2 displays the simplicity of
the following equations. The PAUC as given by (5.3) can then be decomposed to:

PAUCt(thc) = I1(thc)+I2(thc), (5.13)

I1(thc) =
∫ (thc−µ1)/σ

thc

∫ ∞

x
fXY (x,y)dxdy

I2(thc) =
∫ ∞

(thc−µ1)/σ

∫ ∞

x
fXY (x,y)dxdy

The apparent PAUC, PAUC(thc), at the same threshold thc is given by:

PAUC(thc) =
∫ ∞

x′=thc

∫ ∞

y′=x′
fX

(
x′−µ1

σ

)
fY

(
y′−µ2

σ

)
dy′dx′, (5.14)

which, with a change of variables, can be decomposed to:

PAUC(thc) = I2(thc)+I3(thc), (5.15)

I3(thc) =
∫ ∞

(thc−µ1)/σ

∫ x

x−(µ2−µ1)/σ
fXY (x,y)dxdy

It is clear that I1(−∞) = 0, while I3(−∞) > 0. This shows that the apparent AUC, i.e., PAUC(−∞), is upward biased w.r.t. the
AUC.Now, since I1(∞) = I1(−∞) = 0, and I1 is a continuous function in (thc) since fXY is positive and defined everywhere in the
X–Y subspace, this assures that I1 exhibits a maximum at some threshold value. However, I3 is a monotonically nonincreasing
function in thc, and moreover I3(∞) = 0. Since we can always artificially construct a distribution where the probability measure
given by I1 at some value of thc is larger than the one given by I3, then at such a threshold PAUC(thc) < PAUC(thc) and
PAUC(thc) is downward biased with respect to PAUCt.

Remark 5.1. It seems remarkable that the apparent performance at some values of a metric parameter, i.e., thc, would be worse
than the true performance. This runs against the conventional wisdom in the field that the apparent error rate, as a measure
of “badness”, i.e., shortcoming, is downward biased w.r.t. the true error, i.e., optimistically biased; and the apparent AUC,
a measure of “goodness” is upward biased w.r.t. the true AUC, i.e., optimistically biased as well. In the new metric, i.e., the
PAUCt(thc), the apparent performance is optimistically biased if the threshold value is lower than a particular crossover value
thc.o.; after this value the apparent performance may be pessimistically biased. This theorem is illustrated in section 5.4 by
simulation results.

The location-scale assumption in theorems 5.5 and 5.7 is not very vulnerable to criticism, at least under the nonparametric
assumption, i.e., when no parametric form is known for the distributions. It can be considered a first-order analysis where the
available information for the distributions is simply that they will change their location and scale under variation of the training
data sets (Theorem 5.5), or under testing on the same training data set (Theorem 5.7). The virtue of Theorem 5.5 is to raise the
attention of the user when the PAUC is used as a performance metric. That is, it is possible to choose threshold values where the
true performance of the classifier will be very variable. Theorem 5.7 breaks the expected pattern that the apparent performance,
where testing is on the same sample fromwhich learning has been developed, is better than the true performance, where testing
is carried out on an independent population.
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5.3.2. Estimation of Uncertainty in the EstimatedMean Performance

The estimator (5.12) is designed to estimate, from a single available data set, the mean performance of the classifier over the
population of training sets (keeping the same set size), i.e.,Et(PAUCt). This estimator will have a variance over the population
of training data sets, which can be observed in Monte Carlo trials. This observable variance can also be estimated from a single
available data set using a variational approach based on the influence function (introduced in Section 2.1.4 and utilized in Chap-
ter 4). The previous chapter is thus straightforward to extend to the present problem by simply modifying the kernel used for
the AUC to the kernel used for the PAUC. The result is an estimate of the variance of the estimated mean performance directly
from the original bootstrap samples

5.4. Results With Simulated and Real Data Sets

In this section we show the simulation results that compare, in mean and variance, the true performance, PAUCt(thc), the
apparent performance, PAUC(thc), and the bootstrap-based estimator áPAUC(1,1) (thc), versus thc. Estimation of the standard
error of the estimator from a single available data set using the influence function will be compared to the true standard error
obtained from Monte Carlo (MC) trials. Both synthetic data and real data sets will be used in these simulations.

For the present work on the PAUC problem we continue with both, the same simulation parameters and the same real
data set of the previous chapters, where the metric was the AUC, i.e., thc = −∞. MC simulation, typically with 1000 trials, was
carried out to closely approximate the true mean and variance of PAUCt, áPAUC (1,1) , and PAUC. In each trial n observations
are sampled from the underlying distributions and over the 1000 trials the true variability is calculated. The two classifiers used
in this simulation study are the linear and quadratic discriminant classifiers, LDA and QDA, respectively.

Figures 5.3–5.5 are plots for the mean of PAUCt, áPAUC (1,1) , and PAUC vs. thc; they all illustrate the monotonicity of
PAUC(thc) (5.2.2). The estimator áPAUC (1,1) shows an observable bias in the figures. This due to the fact mentioned before
that—See Section 3.2.2—the effective size of the bootstrap-based training sets is .632 of the original set size. These figures also
illustrate the crossover phenomenon explained in Theorem 5.7. This only takes place in a small region of the parameter space.

Figures 5.6–5.8 are plots of the standard error of the same three measures; they illustrate how the variance may increase
with the threshold while the PAUCt(thc) decreases (Corollary 5.6). These figures also demonstrate the smoothing effect of the
bootstrap sampling on the peaking of the variance; see section 5.3.1. Moreover, in some cases the standard error appears as a
monotonically decreasing function of the threshold; e.g., see Figure 5.8.

We note that in practice the region where the variance experiences the peaking phenomenon does not correspond to a typ-
ical region of interest for the threshold setting. For example, in the screening environment where the prevalence of the target
condition is low, one is usually interested in the region of low false-positive fractions, corresponding to somewhat higher thresh-
old regions. For the diagnostic environment where the prevalence of the target condition is high, one solves the problem that
is the mirror image to the one solved here; i.e., the inequalities and order of parameters are reversed. In that case, one will also
find that the most relevant threshold setting is outside of the peaking region. However, these statements may not necessarily
correspond to all situations of interest to practitioners, so users are cautioned to keep Figures 5.6–5.8 in mind.

The nonparametric estimation, using the influence function, for the standard error of áPAUC (1,1) is illustrated in Table 5.1 for
a rangeof thresholdvalues for every experiment, describedaboveanddisplayed in the figures. Thecolumns labeledEMC (áPAUC (1,1)

)
and sdMC (áPAUC(1,1) ) show the true mean and true standard error of the estimator, measured over 1000 MC trials. The column
EMC (ŝd) gives the mean of ŝd(áPAUC(1,1) ), which is the estimation of sd(áPAUC(1,1) ) from one available data set, over 100 MC
trials. The last column is the standard deviation of this estimation from the 100 MC trials. Note that the mean estimates of the
standard error are all within one standard deviation of the MC population results.

5.5. Chapter Summary

A natural generalization of the area under the ROC curve has been introduced to assess classifiers, i.e., the separability
function or the PAUC. The metric is essential for assessing classifiers that are used in an environment whose threshold falls
within an a priori known limited range. Some caution should be taken when choosing the threshold value, since at some values
the performance is intrinsically (i.e., aside from issues of estimation) very variable under the variability of the training data set.
Some mathematical properties of the new metric have been stated and proven.

An estimator was proposed, the leave-pair-out estimator, to estimate the mean of the PAUC. The estimator can be down-
wards (or upward) biased as was the case with its predecessors which estimated the mean AUC (or mean error). The influence
function approach was used to estimate the uncertainty of that estimator from the available set. This uncertainty reflects the
finite size of the sample available to train as well as to test the performance of the classifier.

52



Figure 5.3. Mean of PAUC, áPAUC(1,1) , and PAUC vs. thc using real data set with LDA, n= 15, and p= 4.

Figure 5.4. Mean of PAUC, áPAUC(1,1) , and PAUC vs. thc using real data set with QDA, n= 30, and p= 4.

Figure 5.5. Mean of PAUC, áPAUC(1,1) , and PAUC vs. thc using multinormal-simulated data set with LDA, n= 30, and p= 15.
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Figure 5.6. Standard error of PAUC, áPAUC(1,1) , and PAUC vs. thc using real data set with LDA, n= 15, and p= 4.

Figure 5.7. Standard error of PAUC, áPAUC(1,1) , and PAUC vs. thc using real data set with QDA, n= 30, and p= 4.

Figure 5.8. Standard error of PAUC, áPAUC(1,1) , and PAUC vs. thc using multinormal-simulated data set with LDA, n = 30,
and p= 15.
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Classifier thc MC = 1000 MC = 100

EMC (áPAUC(1,1)
) sdMC (áPAUC(1,1)

) EMC (ŝd) sdMC (ŝd)
LDA -4 .5884 .05218 .0731 .0295
P = 4 -2 .4232 .05733 .0621 .0214
N = 15 -1 .2898 .05135 .0550 .0145

Real Data 0 .1499 .03012 .0374 .0077
1 .06278 .02346 .0229 .0060

QDA -4 .5818 .06674 .0709 .0111
P = 4 -2 .4256 .06242 .0623 .0119
N = 30 -1 .2911 .04228 .0475 .0076

Real Data 0 .1541 .02234 .0288 .0051
1 .06815 .01541 .0169 .0033
-4 .4181 .02655 .0347 .0077

LDA -2 .2798 .02315 .0294 .0039
p= 15 -1 .2083 .01829 .0252 .0037
n= 30 0 .1440 .0142 .0208 .0030

1 .09407 .01175 .0163 .0024
Table 5.1. Different experiments and different n-p-thc combinations. for the estimator PAUC (1,1) measured over 1000 MC trial.
The last two columns are the mean and standard error for the influence function estimator measured over 100 MC trials.
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CHAPTER 6

Assessing Classifiers From Two Independent Data Sets Using ROC Analysis: a
Nonparametric Approach

6.1. Introduction

From the definition of the PAUC in Chapter 5 the AUC, as a special case of the PAUC, can be written as:

AUCtr = Pr(ĥtr(X |ω2) < ĥtr(X |ω1)) (6.1)
We will focus here on the AUC as the metric for the assessment of classifier performance. It is straightforward to extend this
treatment to other summarymeasures of performance such as the PAUC. In the present chapter the training and testing sets will
be separate and independent; hence we will denote them by tr and ts respectively. The fundamental population parameters of
this randomvariable are the following: The true performanceAUCtr conditional on a particular training data set tr of a specified
size but over the population of testers; the expectation of this performance over the population of training data sets EtrAUCtr;
and the measure of variability of this performance over the population of training data sets, namely, VartrAUCtr. Estimators of
these parameters, respectively, àAUCtr, áEtrAUCtr, and áVartrAUCtr, can be obtained in several ways. Parametric estimates can
be obtained by modeling the underlying distributions of the samples, e.g., as in Fukunaga (1990).

The present work addresses the case where the distributions of the samples are either unknown or not readily modeled;
that is, we address the problem of nonparametric estimators of these population parameters. There are several traditional ap-
proaches to using the available data in this estimation task. One approach is to have a common data set that is used for training
and testing; this approach often includes various resampling strategies, including cross-validation and bootstrapping. This ap-
proach is what has been considered in this dissertation up to this point; the first two of these estimators, àAUCtr and áEtrAUCtr,
were discussed, along with their variances, in previous chapters.

Another approach is to maintain what might be called the traditional data hygiene of two independent data sets, one for
training and one for testing. There are some situations, e.g., in several public-policy-making or regulatory settings, in which it
could be highly recommended, or evenmandatory. In the present chapterwe analyze the problem in this context. The approach
will be completely nonparametric. We will derive closed-form expressions for the three estimators listed above, and also for
Vartr,ts àAUCtr (the variance, over the trainers and testers, of the estimator àAUCtr). Note that AUCtr is a population parameter
conditional on a particular training set, which becomes a random variable when a population of training sets is considered;
however, àAUCtr is an estimate of this parameter whose randomness comes from both the finite training set tr and the finite
testing set ts. All of the proposed estimators are functions only in these two data sets.

In Section6.2wegive abrief account of the theoryofU-statistics thatwill establish the frameworkof the estimators discussed
in the present chapter. In Section 6.3 we derive the U-statistic-based estimators of the population parameters discussed above.
In Section 6.4weprovide examples and results of simulations of estimators and their properties over some specifiedpopulations.

6.2. Nonparametric Point Estimation

In nonparametric estimation we assume no knowledge about the distribution of the available data. Any population pa-
rameter must then be estimated from the information in the available data without further assumptions. U-statistics are, by
construction, a class of nonparametric unbiased estimators. All of the estimators, of the means and variances, discussed above
are natural candidates for this approach. We will therefore provide in the present section the fundamental definitions and con-
cepts underlying theU-statistic theory, whichwill be fully utilized in Section 6.3. We follow the terminology used in Randles and
Wolfe (1979).

Definition 6.1. For any distribution F ∈ F ,where F is a family of distributions, a population parameter γ is said to be estimable
of degree r if r is the smallest sample size for which ∃ a function k∗(a1, . . . ,ar) ∋

EF
[
k∗

(
A1, . . . ,Ar

)]= γ (6.2)
The function k∗ is called theU-statistic kernel of the parameter γ. We can always create a symmetric function k from that kernel
by averaging over the permutations:

k
(
a1, . . . ,ar

)= 1

r!

∑
α∈A

k∗
(
aα1 , . . . ,aαr

)
, (6.3)
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where A = {α :α is a permutation of the integers 1, . . . ,r}.
Definition 6.2. Theone-sampleU-statistic for the estimablepopulationparameterγ, withdegree r, is constructed froma sample
with size n as:

U
(
a1, . . . ,an

)= 1(n
r

) ∑
ξ∈S
k

(
aξ1
, . . . ,aξr

)
, (6.4)

where S = {ξ : ξ is one of the
(n
r

)
unordered subsets of r integers chosen without replacement from the set {1, . . . ,n}}.

If the population parameter of interest is a function of two distributions then the U-statistic is called a two-sample statistic
(the concept can be generalized to any number of distributions). The utility of symmetrization is to reduce the variance of the
U-statistic, as Lemma 6.7 below states. Aside from any rigorous proof, this symmetrization utilizes all the available information
in a set of r observations and thus reduces the variance of the estimator. Consider, e.g., the kernel x2

1 −x1x2, where r = 2, whose
expectation is VarX . We have not yet utilized all the available information in the two observations x1 and x2 until we consider
the other permutation x2

2 −x2x1.
Lemma 6.3. The variance of any one-sample U-statistic is given by (see Randles and Wolfe, 1979, Sec. 3.1):

VarU
(
A1, . . . ,Am

)= 1(m
r

) r∑
c=1

(r
c

)(m−r
r−c

)
ξc, (6.5)

where
ξc = Cov

[
k

(
A1, . . . ,Ac,Ac+1, . . . ,Ar

)
,k

(
A1, . . . ,Ac,Ar+1, . . . ,A2r−c

)]
= E

[
k(A1, . . . ,Ac,Ac+1, . . . ,Ar)k(A1, . . . ,Ac,Ar+1, . . . ,A2r−c)

]−γ2 (6.6)
Proof. From (6.4) we can write the variance (6.5) as:

VarU
(
A1, . . . ,An

)= E

[{
1(m
r

) ∑
ξ∈S

[
k

(
Aξ1

, . . . ,Aξr

)−γ]}2]

= 1(m
r

)2

∑
ξ∈S

∑
ξ′∈S

E
[{
k

(
Aξ1

, . . . ,Aξr

)−γ}{
k

(
Aξ′1 , . . . ,Aξ′r

)
−γ

}]
= 1(m

r

)2

∑
ξ∈S

∑
ξ′∈S

Cov
[
k(Aξ1

, . . . ,Aξr ),k(Aξ′1 , . . . ,Aξ′r )
]

(6.7)

Since the kernel k is symmetric any covariance term in (6.7), having exactly c common observations, will be ξc. There are
(m
r

)
ways to split m to two groups, r and m− r. If we want both kernels, in a covariance pair, to have c observations in common
and r− c observations not in common, then we have to choose r− c from the first group that contain r observations—yielding
the binomial coefficient

(r
c

)
—and r−c from the second group containingm−r observations—yielding the binomial coefficient(m−r

r−c
)
. Then the total number of permutations for building the two kernels with common c observations is

(m
r

)(r
c

)(m−r
r−c

)
. Thus,

(6.7) can be rewritten as:

VarU
(
A1, . . . ,An

)= 1(m
r

)2

∑
ξ∈S

∑
ξ′∈S

(
m

r

)(
r

c

)(
m−r
r−c

)
ξc

= 1(m
r

) r∑
c=1

(r
c

)(m−r
r−c

)
ξc, (6.8)

andwe start the summation from 1, not from 0, since the ξ0, the covariance between two independent randomvariables, is equal
to 0.

Definition 6.4. For any two distributions F andG in the family F , a parameter γ is said to be estimable of degree (r,s), respec-
tively, if ∃ a function k∗(a1, . . . ,ar ; b1, . . . ,bs) ∋

EF,G
[
k∗(A1, . . . ,Ar ; B1, . . . ,Bs)

]= γ (6.9)
Again, by averaging over permutations, we can make the kernel k∗ symmetric as done above by defining:

k(a1, . . . ,ar ; b1, . . . ,bs) = 1

r!s!

∑
α∈A

∑
β∈B

k∗(aα1 , . . . ,aαr ; bβ1
, . . . ,bβs

), (6.10)

where A = {α :α is a permutation of the integers 1, . . . ,r} and B = {β : β is a permutation of the integers 1, . . . ,s}.
Definition 6.5. The two-sampleU-statistic for the estimable population parameter γ, with degree (r,s), is constructed from two
samples of sizesm and n respectively by:

U
(
a1, . . . ,am; b1, . . . ,bn

)= 1(m
r

)(n
s

) ∑
ξ∈SA

∑
ζ∈SB

k
(
aξ1
, . . . ,aξr ; bζ1

, . . . ,bζs
)
, (6.11)

where SA and SB are collections of all subsets of r integers chosen fromm integers, and s integers chosen fromn integers, without
replacement.
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Lemma 6.6. The variance of any two-sample U-statistic is given by (see Randles and Wolfe, 1979, Sec. 3.4):

VarU
(
a1, . . . ,am; b1, . . . ,bn

)= 1(m
r

)(n
s

) s∑
d=0

r∑
c=0

(r
c

)(m−r
r−c

)(s
d

)(n−s
s−d

)
ξc,d, (6.12)

where
ξc,d = Cov

[
k(A1, . . . ,Ac,Ac+1, . . . ,Ar ;B1, . . . ,Bd,Bd+1, . . . ,Bs),

k(A1, . . . ,Ac,Ar+1, . . . ,A2r−c;B1, . . . ,Bd,Bs+1, . . . ,B2s−d)
] (6.13)

i.e., the covariance between the two symmetric kernels which have the first c and d observations, respectively, common from
the two samples.

Proof. By splitting the first sample to r andm−r and the second to s and n−s, then proceeding as above when proving Lemma
6.3, the proof is immediate. It is clear that ξ0,0 = 0 since it is a covariance between two independent kernels.

Lemma 6.7. If F includes all continuousdistributions, then theU-statistic is theUniqueMinimumVarianceUnbiasedEstimator
(UMVUE); see Randles and Wolfe (1979, Exercises 3.1.10 and 3.1.11).

Proof. Without loss of any generalitywewill speak in termsof the one-sampleU-statistic. By sorting thenobservationsa1, . . . ,an
such that we have a(1) < ·· · < a(n), then a(j) is called the j’th order statistic. It is not hard to see that any estimator δ(A1, . . . ,An)
is a function of the order statistics if and only if it is symmetric in its arguments. Since the U-statistic is symmetric, by con-
struction, hence it is a function of the order statisticsA(1), . . . ,A(n). Since the order statistics are complete and sufficient for the
nonparametric distribution family F —see Lehmann and Romano (2005, Ex. 2.4.1)—then the U-statistic estimator is a function
of a complete and sufficient statistic. This property is what makes it the UMVUE. The latter follows from the Lehmann-Scheffé
theorem; a good discussion of the concept of UMVUE is provided in Lehmann and Casella (1998, Ch. 2). A full account of
complete and sufficient statistics is given in Casella and Berger (2002, Ch. 6) or Lehmann and Casella (1998, Sec. 1.6).

Lemma 6.8. if U1 and U2 are U-statistic estimators for γ1 and γ2 respectively and the degree(s) of γ1 +γ2 is the maximum of the
degree(s) of γ1 and γ2, then U1 +U2 is the U-statistic estimator for γ1 +γ2 Randles and Wolfe (see 1979, Ex. 3.1.2). This Lemma
applies to one- and two-sample U-statistics as well.

6.3. Analyzing the AUC

The present problem is a member of a class of problems that involve several sources of randomness that contribute to the
outcome. An important example for the field of diagnostic medicine has been that of assessing medical imaging systems. In
that problem two major sources of randomness are the variability of patient cases and the variability of the radiologists who
read their images. A large literature has evolved to address this problem and a unifying framework based on linear components-
of-variance models has been provided in Roe and Metz (1997a) and Roe and Metz (1997b). The authors in Beiden, Maloof and
Wagner (2003) discussed the correspondence between the random effects of readers and cases in imaging and the random ef-
fects of finite training sets and finite test sets in the field of statistical pattern recognition and showed how some methods in the
former field apply to the latter. The authors of Barrett, Kupinski and Clarkson (2005) questioned the approach of basing these
solutions on the linear statisticalmodels and provided a formulation based on general principles ofmultivariate probability the-
ory. Practical implementations of the literature cited here have depended on methods of statistical resampling. In Gallas (2006)
it has been shown that the approach to the medical imaging problem addressed in Barrett, Kupinski and Clarkson (2005) can be
implemented without statistical resampling. The authors in DeLong, DeLong and Clarke-Pearson (1988) started analyzing the
problem from the U-statistic theoretic approach, yet they relied on the resampling techniques in deriving their estimators. The
present work addresses the problem of assessing classifiers in the field of pattern recognition, and our point of departure is to
provide a rigorous analysis under the theory of nonparametric estimation.

6.3.1. Variance Decomposition

We begin by analyzing the true conditional AUC, Eq. (6.1), and its estimator in mean and variance. We consider the setting
where we are required to maintain two independent data sets, one for training and one for testing. In the previous chapters this
restriction was not imposed. We denote the training data set tr = tr1 ∪ tr2, where trc = {ti : ti = (xi,yi), i= 1, ...,ntrc , yi = ωc, c=
1,2}, and a testing data set ts = ts1 ∪ ts2, where tsc = {ti : ti = (xi,yi), i = 1, ...,ntsc , yi = ωc, c = 1,2}. A classifier trained on the
training set tr and tested on the testing set ts estimates the true AUCAUCtr by àAUCtr. The latter is a function of tr and ts, while
the former is only a function of tr. For simplicity of notation we will refer to AUCtr as γ and to àAUCtr as γ̂, where γ̂ = γ̂(tr,ts).
The two sets tr and ts comprise, respectively, ntr and nts observations each of which is p-dimensional vector; hence they are
(p×ntr)- and (p×nts)-dimensional vectors. Consequently, γ̂(tr,ts) is a function of two random variables and its variance can be
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decomposed to (see Casella and Berger, 2002, Sec. 4.4):

Vartr,ts γ̂ = Etr,ts[γ̂2]− (
Etr,ts[γ̂]

)2

= Etr[Varts γ̂]+Vartr[Ets γ̂], (6.14)
where the subscripts tr and ts indicate over which random variable the expectation and the variance are taken. E.g., Ets γ̂ will
be a random variable whose randomness comes only from tr. In Section 6.5 we write (6.14) in a different form to comment on
some conventional wisdom in the field.

Eq. (6.14) provides the decomposition of the variance of an estimator γ̂. We require first the estimator γ̂ itself. We simplify
the notation by letting ai = ĥtr(xi|ω1) represent an observation of the random variableA; in medical diagnostics this represents
the abnormal class, i.e., the class with the higher average log-likelihood values. Also let bj = ĥtr(xj |ω2) represent an observation
from the random variable B; in medical diagnostics this represents the normal class, i.e., the class with the lower average log-
likelihood values. The subscript tr indicates that the log-likelihood ratio ĥ is obtained from a particular training data set tr. The
U-statistic estimator for γ is obtained by defining the kernel

k∗1 (ai;bj) =
{

1 bj < ai
0 otherwise

(6.15)

It is clear that expectation of k∗1 with respect to (w.r.t.) the set of bj ’s and ai’s is the AUC (6.1). It is a two-sample kernel with
degrees r = s= 1. Since this kernel is already symmetric, i.e., k1 = k∗1 from (6.10), the U-statistic estimator γ̂ is immediately:

γ̂ = 1

nts1nts2

nts2∑
j=1

nts1∑
i=1

k1(ai;bj), (6.16)

which is the well-known Mann-Whitney statistic, a version of the Wilcoxon statistic, the UMVUE for the population parameter
γ = Pr(B <A). The random variablesA andB are distributed as ĥtr(X |ω1) and ĥtr(X |ω2) respectively.

Lemma 6.9 (Varts γ̂). The variance of γ̂ over the population of testers ts, conditional on a particular training set tr, is given by:

Varts γ̂ = 1

nts1nts2

[
(nts1 −1)p12 + (nts2 −1)p21 +γ− (nts−1)γ2] , (6.17)

where
p12 = Pr

[
B < min(A1,A2)

]
, (6.18a)

p21 = Pr
[
max(B1,B2) <A]

, (6.18b)
where allA1,A2, andA are i.i.d. and so areB1,B2 andB.

Proof. Since r = s= 1, then it follows directly from (6.12) that

Varts γ̂ = 1

nts1nts2

[(nts1 −1)ξ0,1 + (nts2 −1)ξ1,0 +ξ1,1] (6.19)

Direct application to (6.13) shows that
ξ0,1 = E[k1(a1;b1)k1(a2;b1)]−E[k1(a1;b1)]E[k1(a2;b1)]

= Pr
[
B < min(A1,A2)

]−γ2, (6.20a)

ξ1,0 = E[k1(a1;b1)k1(a1;b2)]−E[k1(a1;b1)]E[k1(a1;b2)]

= Pr
[
max(B1,B2) <A]−γ2, (6.20b)

ξ1,1 = E[k1(a1;b1)k1(a1;b1)]−E[k1(a1;b1)]E[k1(a1;b1)]

= γ−γ2, (6.20c)

where k1(a1;b1)2 = k1(a1;b1) is used (check the definition (6.15)). By substituting back into (6.19), (6.17) follows directly.

An analogue of (6.17)was previously givenwithout derivation inCampbell, Douglas andBailey (1988) for the case of a simple
diagnostic test. In the present chapter we essentially investigated the variance of γ̂ when the only random effect was from the
finite testing set, i.e., Varts γ̂. In the present chapter, this variance represents the bracketed quantity in the first term in (6.14).

Theorem 6.10 (Vartr,ts γ̂). The variance of the Mann-Whitney estimator is given by:

Vartr,ts γ̂ = 1

nts1nts2

Etr
[
γ+γ2 −p12 −p21

]+ 1

nts2

Etr
[
p12 −γ2]+ 1

nts1

Etr
[
p21 −γ2]

+Etrγ
2 − (Etrγ)2 (6.21)
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Proof. Since Ets γ̂ = γ, from the unbiasedness of the U-statistic, then
Vartr[Ets γ̂] = Vartrγ

= Etrγ
2 − (Etrγ)2 (6.22)

That is, the variance of the true conditional AUC is a component of the variance of the estimator that estimates that AUC. The
proof is completedby combining this equationwith the result fromLemma6.9, then substituting back into (6.14) and combining
the common terms for nts1 and nts2 .

Before moving on to the nonparametric estimation, we have to comment on the last theorem. A classifier trained on the
training set tr has the true conditional performance AUC, i.e., γ. The classifier has the mean performance Etrγ, which is not a
random variable any more; the classifier also has the variance Vartrγ over the population of training sets. These very important
parameters are parts of the variance of the statistic γ̂ that estimates, from only one training and one testing set, the true condi-
tional performance γ. Estimating these parameters, from the same training and testing sets, is not only desirable as a means for
estimating the variance of a statistic, i.e., Vartr,ts γ̂, but it is valuable for its own sake, since they are performance parameters of
the classifier itself.

6.3.2. Nonparametric Estimation

We start by estimating p12 and p21 in (6.18). Define the kernel

k∗2 (ai,ai′ ;bj) =
{

1 bj < min(ai,ai′ )
0 otherwise

, (6.23)

where Etsk
∗
2 = p12,r = 2, and s= 1; then make it symmetric as explained in (6.10):

k2(ai,ai′ ;bj) = 1

2

[
k∗2 (ai,ai′ ;bj)+k∗2 (ai′ ,ai;bj)

]
(6.24)

Then the U-statistic estimator for p12 is given by

p̂12 = 1(nts1
2

)(nts2
1

)nts1∑
i=1

∑
i′>i

nts2∑
j=1

k2(ai,ai′ ;bj) (6.25)

Analogously, p21 is estimated by defining the kernel

k∗3 (ai;bj ,bj′ ) =
{

1 max(bj ,bj′ ) < ai
0 otherwise

, (6.26)

where Etsk
∗
3 = p12,r = 1, and s= 2; then make it symmetric by defining

k3(ai;bj ,bj′ ) =
1

2

[
k∗3 (ai;bj ,bj′ )+k∗3 (ai;bj′ ,bj)

]
(6.27)

Then the U-statistic estimator for p21 is given by

p̂21 = 1(nts1
1

)(nts2
2

)nts1∑
i=1

nts2∑
j=1

∑
j′>j

k3(ai;bj ,bj′ ) (6.28)

In Campbell, Douglas and Bailey (1988), the authors estimated γ2 by γ̂2. Although this has the correct asymptotic behavior,
it will be biased for finite sample sizes. Rather, γ2 can be estimated anew by proposing kernel

k∗4 (ai,ai′ ;bj ,bj′ ) =
{

1 bj < ai & bj′ < ai′
0 otherwise

= k∗1 (ai;bj)k∗1 (ai′ ;bj′ ) (6.29)

Then it is clear that r = s= 2 and Etsk
∗
4 = γ2. The symmetric kernel is obtained as

k4(ai,ai′ ;bj ,bj′ ) =
1

2

[
k∗4 (ai,ai′ ;bj ,bj′ )+k∗4 (ai′ ,ai;bj ,bj′ )

]
(6.30)

Then the U-statistic estimator for γ2 is given by

γ̂2 = 1(nts1
2

)(nts2
2

)nts1∑
i=1

∑
i′>i

nts2∑
j=1

∑
j′>j

k4(ai,ai′ ;bj ,bj′ ) (6.31)

The estimators discussed in this section, thus far, are the estimators of the components of Varts γ̂ that are required for (6.21).
The total expression in that equation for the uncertainty from both the training and testing sets requires that we take the ex-
pectation over the population of training sets, Etr. If we had the availability of multiple training sets, this expectation could be
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estimated by averaging over the multiple training sets, i.e.,

áEtr(̂(ts,tr))s= 1

B

B∑
b=1
ŝ(ts,trb), (6.32)

where trb is the training set b, where ŝ is either γ̂, γ̂2, p̂12, or p̂21. That is, from every training data set we train the classifier and
obtain an estimate ŝ(ts,trb) by testing ts, then take the average over the different training sets. We committed ourselves from the
beginning to the restriction of having only one available training and testing sets. In such a situation, the estimator (6.32) can
be approximated by averaging over bootstrap replications from the available training set, i.e.,

áEtr(̂(ts,tr))s≈ 1

B

B∑
b=1
ŝ(ts,tr∗b ), (6.33)

where tr∗
b
is the bth bootstrap replication from tr. This estimator, however, can be biased (see Section 3.2.2).

The last component to be estimated is (Etrγ)2. In contrast to simply proposing the intuitive estimator �(Etrγ)
2, which is

biased, implementingaU-statistic estimator, following thedefinitions inSection6.2, requiresdefiningakernel over twodifferent
training sets; so we should keep the full notation hb(xi|ωc) rather than ai or bj to distinguish a’s and b’s obtained from the same
testing set ts but from different training sets trb and trb′ . For more simple notation, we drop the class ωc and let xi and xi′
represent two observations from ts1, while zj and zj′ represent two observations from ts2. Then define the kernel

k∗5 (xi,xi′ ;zj ,zj′ ;trb,trb′ ) = k∗1
(
h1(xi);h1(zj)

)
k∗1

(
h2(xi′ );h2(zj′ )

)
(6.34)

This kernel equals one if, for two pairs, theω1 observation has a higher decision value than theω2 observation for every pair after
training on two different training sets. This kernel is a three-sampleU-statistic kernel with r = s= k = 2, where Etr,tsk

∗
5 = (Etrγ)2.

This kernel can be symmetrized by

k5(xi,xi′ ;zj ,zj′ ;trb,trb′ ) =
1

4
[

k∗1
(
h1(xi);h1(zj)

)
k∗1

(
h2(xi′ );h2(zj′ )

)+k∗1 (
h1(xi);h1(zj′ )

)
k∗1

(
h2(xi′ );h2(zj)

)
+k∗1

(
h1(xi′ );h1(zj)

)
k∗1

(
h2(xi);h2(zj′ )

)+k∗1 (
h1(xi′ );h1(zj′ )

)
k∗1

(
h2(xi);h2(zj)

)
] (6.35)

The U-statistic estimator is then given by

à(Etrγ)2 = 1(nts1
2

)(nts2
2

)(B
2

) B∑
b=1

∑
b′>b

nts1∑
i=1

∑
i′>i

nts2∑
j=1

∑
j′>j

k5(xi,xi′ ;zj ,zj′ ;trb,trb′ ) (6.36)

Once again, the summation over the different training sets B can be approximated by summation over bootstrap replications
as in (6.33).

Now we have estimated all the components of (6.21). Every component is a U-statistic estimator with some degree. It is
easy to see that the overall degree of the expression (6.21) cannot be reduced below themaximumdegree of its components, i.e.,
r = s= k = 2. Then by Lemma 6.8 the summation of the above estimated components is the U-statistic estimator for the whole
expression; hence it is the UMVUE for Vartr,ts γ̂ over F , the class of all continuous distributions for ts and tr. After approximating
the summation (the averaging) over different training sets by the bootstrap replications from one training set the estimator is no
longer the UMVUE; rather, it is an approximation to it.

6.4. Simulation Results

In this section we illustrate the approach discussed above with application to several experiments. The classifiers used are
the Linear and Quadratic Discriminant Analysis. We use the same experiment parameters described in Section 3.2.1.The first
rows of Table 6.1 lists the experiments with their parameters.

The true population parameters of interest are the following: the mean performance Etrγ; the square of the mean perfor-
mance

(
Etrγ

)2; the mean of the squared mean performance Etrγ
2; the variance of the true performance Vartrγ; the mean of

variance of the estimator γ̂, i.e., Etr[Varts γ̂]; and the variance of the estimator Vartr,ts γ̂. Table 6.1 illustrates the true value of
these parameters, obtained from a large number of Monte-Carlo (MC) trials, for the different experiments shown at the head of
the table. Each one of these parameters is estimated from one simulated training set and an independent simulated testing set
using the estimators derived in Section 6.3.2. MC trials are also carried out to study the mean and variance of these estimators
over many training and testing sets. Every population parameter in the table is followed by the mean and the standard error
(obtained over 1000 MC trials) of its estimate. The estimators have some bias, as anticipated, from the nature of the reduction
in the effective number of training samples when bootstrapping trainers (cf. Section 6.3.2).

The table shows how the different parameters are estimated almost without bias. However, some bias is observable and
attributable back to the bootstrap effect, which accounts for reducing the training set size. The component Vartrγ is much
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Parameters Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6
Classifier LDA LDA QDA QDA QDA LDA

p 3 3 3 5 5 20
ntr/2 7 50 50 20 30 30
nts/2 70 10 10 20 40 10

Etrγ .7342 .7983 .7828 .6921 .7197 .7021
EM �Etrγ .6970 .7884 .7599 .6480 .6820 .6452

SDM �Etrγ .0764 .0991 .1002 .0723 .0580 .0924(
Etrγ

)2
.5390 .6372 .6128 .4790 .5180 .4930

EM
á(
Etrγ

)2
.4904 .6220 .5783 .4213 .4664 .4173

SDM
á(
Etrγ

)2
.1006 .1564 .1518 .0940 .0789 .1203

Etrγ
2 .5456 .6373 .6130 .4810 .5191 .4943

EM
�Etrγ2 .4980 .6222 .5789 .4235 .4679 .4192

SDM
�Etrγ2 .0964 .1564 .1518 .0940 .0787 .1204

Vartrγ .0065 .0001 .0003 .0021 .0011 .0014
EM àVartrγ .0076 .0003 .0006 .0022 .0015 .0019

SDM àVartrγ .0075 .0013 .0017 .0022 .0011 .0039
Etr[Varts γ̂] .0017 .0102 .0110 .0069 .0032 .0140

EM
áEtr Varts γ̂ .0018 .0106 .0118 .0075 .0035 .0155

SDM
áEtr Varts γ̂ .0003 .0046 .0042 .0009 .0004 .0025
Vartr,ts γ̂ .0083 .0102 .0112 .0090 .0043 .0153

EM
áVartr,ts γ̂ .0094 .0109 .0124 .0097 .0050 .0173

SDM
áVartr,ts γ̂ .0076 .0048 .0046 .0023 .0012 .0043

Table 6.1. Different experiments with different parameters. p is the dimensionality of every problem, ntr/2 and nts/2 are the
training and testing set sizes per class. The true population parameters (obtained from MC experiments); each parameter is
followed by the mean and the standard deviation of its estimate (also obtained from repeated MC trials), where each estimate
was obtained from a single training and a single testing set. A small bias is traceable to the reduction in support of the training
set size under bootstrapping.

influenced in some experiments, e.g., Exp. 2 and 3, with the reduction in the effective sample size coming from bootstrapping.
The bias observed for such a component in these experiments has negligible effect on estimating the variance Var γ̂ since the
other component, Etr[Varts γ̂], dominates. It is remarkable that the results in Exp. 6 are typically well within the mean standard
error despite the high dimensionality (p= 20).

6.5. Discussion and Remarks

Remark 6.1. We can examine the connection of the present work with relevant contemporary literature on similar problems,
see Roe and Metz (1997a) and Roe and Metz (1997b), by rewriting (6.14) as

Vartr,ts γ̂ = Vartr[Ets γ̂]+Varts[Etr γ̂]−Varts[Etr γ̂]+Etr[Varts γ̂]

= Vartr[Ets γ̂]︸ ︷︷ ︸
σ2

tr

+Varts[Etr γ̂]︸ ︷︷ ︸
σ2

ts

+E γ̂2 + (E γ̂)2 −Etr[Ets γ̂]2 −Ets[Etr γ̂]2︸ ︷︷ ︸
Ctr,ts

(6.37)

This problem was previously modeled, see Beiden, Maloof and Wagner (2003), in terms of a linear components-of-variance
model as

Vartr,ts γ̂ =σ2
tr +σ2

ts +σ2
tr,ts, (6.38)

The similarity and difference of these two results is worthy of comment. It is reasonable to identify the first term of (6.37) with
the first term of (6.38), at least conceptually. In the language of the components-of-variance models, they are the pure random
effect of the finite size of the training sets; i.e., they are what remains in the variance when the number of testers goes to infinity.
Similarly, it is reasonable to match up the second term of both equations. They would be considered the pure random effect of
the finite size of the test sets; i.e., they are what remains in the variance when the number of trainers goes to infinity. The third
term in the components-of-variance model of (6.38) is referred to as the trainer-tester interaction Beiden, Maloof and Wagner
(2003); it would vanish if either the number of trainers or the number of testers goes to infinity. This kind of term is included in
these models to allow for flexible variance structures; e.g., to explicitly allow the range of difficulty in the test set to depend on
the range of difficulty in the training set. In thesemodels, all of the terms are variances and are thus always nonnegative. The last
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term in (6.37), however, can have either sign; thus, it cannot strictly be a variance. This can be proven by two simple examples.
If we assume that γ̂ = f1(tr)+f2(ts) then it is straightforward to see that Ctr,ts = 2Cov(f1,f2), which can have both signs. While if
γ̂ = f1(tr)·f2(ts) thenCtr,ts = Varf1 ·Varf2, which is always positive.

Nevertheless, one can argue from a practical point of view that it is expected that the range of difficulty in the test set would
have a positive covariance with the range of difficulty in the training set, but not vice versa. We conclude that the components-
of-variance model is not an unreasonable point of departure for understanding the roles of multiple random effects. We also
see that it is not necessary for the solution of the current problem.

Remark 6.2. The most time consuming estimation is Eq. 6.36. This isO(B2 ·n4
ts), i.e., if it takes one hour on a specific machine it

would take 16hours if the testing set size is doubled. Thiswas a time constraint factor not to extend thenumber of experiments to
include more testing set sizes. However, we took advantage of the sorting techniques and reduced the complexity toO(B2 ·n3

ts).
It does not seem possible to us to reduce it belowO(B2 ·n2

ts lognts). Experiment 1, when 100 bootstraps are used, took 30 hours
on a P4–2.4 GHz machine.

6.6. Chapter Summary

The present chapter considered assessing classifiers from independent training and testing sets; the metric was the AUC;
however it can be immediately applicable to the PAUC by replacing the kernel (6.15) by (5.11). The analysis here assumed no
particular distribution, i.e., nonparametric assessment. A closed form expression was derived for the variance of the estimator
that estimates the true conditional AUC. The components of that expression are population parameters which are, themselves,
importantmetrics for the classifier, e.g.,mean and variance of the AUC fromdifferent training sets. U-statistic estimators are de-
rived for these components and for the whole expression. Simulation results show how the proposed methodology is successful
even in high dimensionality. The present chapter is very important for those who construct classification rules—as companies
submitting new medical testing devices—and have neither enough data to test the new classifier nor parametric knowledge of
the data distribution. It is important, as well, for any regulatory-decision makers to assess any new submitted product.
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CHAPTER 7

Conclusions, Contributions, and FutureWork

This dissertation addressed the classical problem of the assessment of statistical classification rules. The emphasis was on
assessing classifiers in terms of ROC analysis. This more general approach is useful in applications where the prevalences of the
classes as well as the relative costs of the two kinds of correct and incorrect classifications may vary from one environment to
another, leading to the need to consider a range of threshold settings. The contributions of this work are the following:

• Nonparametric estimation for the conditional and the mean performance of classifiers in terms of the Area Under the
ROC Curve (AUC) from one data set using the various bootstrap methods. This is an extension of methods defined and
used by Efron (1983); Efron and Tibshirani (1997) for estimating the error rate of a classification rule. Until now, the
error rate has been the historically predominant performance measure in the literature on statistical pattern recogni-
tion.

• Using the method of the influence function to estimate the uncertainty of the estimator above. This is an extension
of Efron and Tibshirani (1997) where they used the same method to estimate the uncertainty of the estimator that
estimates themean error rate. The presentwork required defining the smooth leave-pair-out estimator, which is a two-
sample statistic. This is in contrast to Efron’s leave-one-out estimator, which is a one-sample statistic for estimating
the error rate.

• Proposing the natural extension of the Mann-Whitney kernel to the task of nonparametric estimation of the Partial
Area Under the ROC Curve (PAUC), analyzing the properties of the PAUC, and estimating the mean PAUC and the
variance of that estimate using the methods summarized above. All of the present estimates are nonparametric; there
was no need to make the common parametric assumption of binomial statistics as in medical diagnostics. Although
the concept of the partial area precedes the presentwork, e.g., the parametric version introduced in the field ofmedical
diagnostic testing, there have been no previous developments of the concept of PAUC in the field of statistical pattern
recognitionwhere there are two random effects, namely, training and testing. Several new features of the present work
are the derivations of the properties of the “true” PAUC, i.e., the PAUC conditional on a particular training data set.
The work uncovered several surprising properties of the PAUC.

• Establishing themathematical nonparametric treatment for assessing classification rules in terms of both the AUC and
PAUC from two independent data sets. This approach is a direct application of U-statistics to obtain nonparametric
UMVU estimators for different population parameters, e.g., the conditional performance, the mean performance, and
the performance variance.

The new solutions sketched above are documented in four publications, Yousef, Wagner and Loew (2004, 2005); Yousef
(2013); Yousef, Wagner and Loew (2006) respectively. The fundamental set of problems addressed in this dissertation serves
many fields where the general problemof binary classification arises. These fields includemedical diagnostics, automatic target
recognition, satellite imaging, anddatamining. Theassessment task is very important forbothclassifier designers and regulatory
agencies that review submitted proposals. When data are scarce and no parametric formulation is possible, the nonparametric
assessment techniques discussed in this dissertation have critical relevance.

It is worth mentioning that the techniques specified in this dissertation are independent of the particular classification rule
to be used. This is so since all of these techniques are functions of the numerical value of the modeled log-likelihood ratio of
every observation in the data sample, no matter which classifier generated this value.

An obvious next step is to apply the techniques developed here to a wide range of classification rules. This will serve not
only as a check on the claim made above of the independence of the present methods to the particulars of a classification rule,
but also provide a practical demonstration of the generality of this work. It will also serve to show whether there are classes of
classification rules and types of data distributions that reveal limitations of those techniques.

Another extension to the dissertation is the application of the techniques in Chapter 6 to the one-data-set paradigm to
estimate the variability of the classifier itself. It is expected that the estimation will be better than the one obtained by splitting
the available data into two disjoint data sets, since this maximizes data utilization.

A third piece ofwork is to examine the behavior of different kinds of nonparametric classifiers, e.g., classification and regres-
sion trees (CART) and some computational intelligence techniques such as neural networks and fuzzy logic, under situations
where data are scarce. A particular limitation in that case is that there are no available data on which to run Monte-Carlo trials
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to test the classifier, e.g., as in the case of clinical studies. In such a situation, the overall approach and methods proposed and
developed in this dissertation will be the natural candidates for the assessment task.
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